Properties

Label 2-75504-1.1-c1-0-80
Degree $2$
Conductor $75504$
Sign $1$
Analytic cond. $602.902$
Root an. cond. $24.5540$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·5-s + 9-s − 13-s − 2·15-s − 6·17-s − 4·23-s − 25-s + 27-s − 6·29-s − 4·31-s + 2·37-s − 39-s − 10·41-s − 4·43-s − 2·45-s − 8·47-s − 7·49-s − 6·51-s − 6·53-s − 4·59-s + 2·61-s + 2·65-s + 4·67-s − 4·69-s + 8·71-s − 14·73-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894·5-s + 1/3·9-s − 0.277·13-s − 0.516·15-s − 1.45·17-s − 0.834·23-s − 1/5·25-s + 0.192·27-s − 1.11·29-s − 0.718·31-s + 0.328·37-s − 0.160·39-s − 1.56·41-s − 0.609·43-s − 0.298·45-s − 1.16·47-s − 49-s − 0.840·51-s − 0.824·53-s − 0.520·59-s + 0.256·61-s + 0.248·65-s + 0.488·67-s − 0.481·69-s + 0.949·71-s − 1.63·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 75504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75504 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(75504\)    =    \(2^{4} \cdot 3 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(602.902\)
Root analytic conductor: \(24.5540\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 75504,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + p T^{2} \) 1.7.a
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.60890396477115, −14.11242386045217, −13.49822022617559, −13.06961255217638, −12.70027851994125, −11.99758021832065, −11.49242184213988, −11.22552637016903, −10.58500855095626, −9.911040446982773, −9.513953542965430, −8.946122519943422, −8.336090939657879, −8.034795221691869, −7.480090573676147, −6.884357437753764, −6.484297164966227, −5.720996211764200, −4.977582028768819, −4.491035881302174, −3.872456142376309, −3.471036401621559, −2.762083288028685, −1.963628645575468, −1.547704181728818, 0, 0, 1.547704181728818, 1.963628645575468, 2.762083288028685, 3.471036401621559, 3.872456142376309, 4.491035881302174, 4.977582028768819, 5.720996211764200, 6.484297164966227, 6.884357437753764, 7.480090573676147, 8.034795221691869, 8.336090939657879, 8.946122519943422, 9.513953542965430, 9.911040446982773, 10.58500855095626, 11.22552637016903, 11.49242184213988, 11.99758021832065, 12.70027851994125, 13.06961255217638, 13.49822022617559, 14.11242386045217, 14.60890396477115

Graph of the $Z$-function along the critical line