Properties

Label 2-74360-1.1-c1-0-1
Degree $2$
Conductor $74360$
Sign $1$
Analytic cond. $593.767$
Root an. cond. $24.3673$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 5-s + 9-s − 11-s − 2·15-s − 2·17-s + 4·19-s − 4·23-s + 25-s − 4·27-s − 6·29-s − 6·31-s − 2·33-s − 6·37-s − 4·41-s − 10·43-s − 45-s − 8·47-s − 7·49-s − 4·51-s + 4·53-s + 55-s + 8·57-s − 8·59-s + 14·61-s − 4·67-s − 8·69-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.447·5-s + 1/3·9-s − 0.301·11-s − 0.516·15-s − 0.485·17-s + 0.917·19-s − 0.834·23-s + 1/5·25-s − 0.769·27-s − 1.11·29-s − 1.07·31-s − 0.348·33-s − 0.986·37-s − 0.624·41-s − 1.52·43-s − 0.149·45-s − 1.16·47-s − 49-s − 0.560·51-s + 0.549·53-s + 0.134·55-s + 1.05·57-s − 1.04·59-s + 1.79·61-s − 0.488·67-s − 0.963·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(74360\)    =    \(2^{3} \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(593.767\)
Root analytic conductor: \(24.3673\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 74360,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.330074674\)
\(L(\frac12)\) \(\approx\) \(1.330074674\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 + p T^{2} \) 1.7.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.19819559750230, −13.44451806882700, −13.27797461704763, −12.79031780511910, −11.93924629008818, −11.65700032635964, −11.16716940468248, −10.44195781698730, −9.977778594773768, −9.395233057938286, −8.996619310064129, −8.380987084145434, −8.067907806975914, −7.488782516012330, −7.061512550510188, −6.417352841555364, −5.600938625011173, −5.183305510647039, −4.459417566546696, −3.715894428475258, −3.371506238524357, −2.882140375288398, −1.869677627245022, −1.743580499054449, −0.3249665963388361, 0.3249665963388361, 1.743580499054449, 1.869677627245022, 2.882140375288398, 3.371506238524357, 3.715894428475258, 4.459417566546696, 5.183305510647039, 5.600938625011173, 6.417352841555364, 7.061512550510188, 7.488782516012330, 8.067907806975914, 8.380987084145434, 8.996619310064129, 9.395233057938286, 9.977778594773768, 10.44195781698730, 11.16716940468248, 11.65700032635964, 11.93924629008818, 12.79031780511910, 13.27797461704763, 13.44451806882700, 14.19819559750230

Graph of the $Z$-function along the critical line