Properties

Label 2-6272-1.1-c1-0-94
Degree $2$
Conductor $6272$
Sign $1$
Analytic cond. $50.0821$
Root an. cond. $7.07687$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 2·5-s + 9-s + 2·11-s + 2·13-s + 4·15-s + 2·17-s + 2·19-s + 4·23-s − 25-s − 4·27-s + 6·29-s + 4·33-s − 10·37-s + 4·39-s + 6·41-s − 6·43-s + 2·45-s + 8·47-s + 4·51-s + 6·53-s + 4·55-s + 4·57-s + 14·59-s + 2·61-s + 4·65-s − 10·67-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.894·5-s + 1/3·9-s + 0.603·11-s + 0.554·13-s + 1.03·15-s + 0.485·17-s + 0.458·19-s + 0.834·23-s − 1/5·25-s − 0.769·27-s + 1.11·29-s + 0.696·33-s − 1.64·37-s + 0.640·39-s + 0.937·41-s − 0.914·43-s + 0.298·45-s + 1.16·47-s + 0.560·51-s + 0.824·53-s + 0.539·55-s + 0.529·57-s + 1.82·59-s + 0.256·61-s + 0.496·65-s − 1.22·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6272 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6272 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6272\)    =    \(2^{7} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(50.0821\)
Root analytic conductor: \(7.07687\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6272,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.153608433\)
\(L(\frac12)\) \(\approx\) \(4.153608433\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.241245270225530562998002812161, −7.34525112137563992258201860959, −6.75316825864606352254488002562, −5.84930432399668081424677432212, −5.32686527890757944440591569596, −4.22305701392233207301956082818, −3.45578431405321998061897801865, −2.78812977513684531419313254549, −1.94432221551497566565336210098, −1.07814716423299698059230098817, 1.07814716423299698059230098817, 1.94432221551497566565336210098, 2.78812977513684531419313254549, 3.45578431405321998061897801865, 4.22305701392233207301956082818, 5.32686527890757944440591569596, 5.84930432399668081424677432212, 6.75316825864606352254488002562, 7.34525112137563992258201860959, 8.241245270225530562998002812161

Graph of the $Z$-function along the critical line