Properties

Label 2-62400-1.1-c1-0-121
Degree $2$
Conductor $62400$
Sign $1$
Analytic cond. $498.266$
Root an. cond. $22.3218$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4·7-s + 9-s + 13-s − 2·17-s + 8·19-s + 4·21-s + 4·23-s + 27-s − 6·29-s + 8·31-s + 6·37-s + 39-s − 6·41-s + 4·43-s + 4·47-s + 9·49-s − 2·51-s + 6·53-s + 8·57-s + 8·59-s + 10·61-s + 4·63-s − 4·67-s + 4·69-s − 8·71-s + 14·73-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.51·7-s + 1/3·9-s + 0.277·13-s − 0.485·17-s + 1.83·19-s + 0.872·21-s + 0.834·23-s + 0.192·27-s − 1.11·29-s + 1.43·31-s + 0.986·37-s + 0.160·39-s − 0.937·41-s + 0.609·43-s + 0.583·47-s + 9/7·49-s − 0.280·51-s + 0.824·53-s + 1.05·57-s + 1.04·59-s + 1.28·61-s + 0.503·63-s − 0.488·67-s + 0.481·69-s − 0.949·71-s + 1.63·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 62400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 62400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(62400\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(498.266\)
Root analytic conductor: \(22.3218\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 62400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.226061570\)
\(L(\frac12)\) \(\approx\) \(5.226061570\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.29704839500457, −13.71875440862263, −13.48284298378062, −12.88480863857393, −12.14348757329769, −11.62621116794627, −11.30057897891857, −10.86372552238619, −10.07065066550584, −9.692892925422773, −9.022675562090735, −8.546350547609295, −8.138342467385082, −7.482128116016887, −7.229790462262849, −6.495326001269788, −5.574974792027579, −5.293730584191700, −4.598220564066052, −4.107077168121648, −3.396141281486262, −2.689854507216347, −2.114711629786990, −1.288162784951851, −0.8445083024729771, 0.8445083024729771, 1.288162784951851, 2.114711629786990, 2.689854507216347, 3.396141281486262, 4.107077168121648, 4.598220564066052, 5.293730584191700, 5.574974792027579, 6.495326001269788, 7.229790462262849, 7.482128116016887, 8.138342467385082, 8.546350547609295, 9.022675562090735, 9.692892925422773, 10.07065066550584, 10.86372552238619, 11.30057897891857, 11.62621116794627, 12.14348757329769, 12.88480863857393, 13.48284298378062, 13.71875440862263, 14.29704839500457

Graph of the $Z$-function along the critical line