| L(s)  = 1  |     + 3-s         + 2·7-s     + 9-s     + 4·11-s     − 13-s         − 8·17-s     − 6·19-s     + 2·21-s     + 6·23-s         + 27-s     + 4·29-s         + 4·33-s         − 2·37-s     − 39-s     − 2·41-s     + 4·43-s             − 3·49-s     − 8·51-s     − 10·53-s         − 6·57-s     + 4·59-s     + 10·61-s     + 2·63-s         − 12·67-s     + 6·69-s     + 8·71-s     + 8·73-s  + ⋯ | 
 
| L(s)  = 1  |     + 0.577·3-s         + 0.755·7-s     + 1/3·9-s     + 1.20·11-s     − 0.277·13-s         − 1.94·17-s     − 1.37·19-s     + 0.436·21-s     + 1.25·23-s         + 0.192·27-s     + 0.742·29-s         + 0.696·33-s         − 0.328·37-s     − 0.160·39-s     − 0.312·41-s     + 0.609·43-s             − 3/7·49-s     − 1.12·51-s     − 1.37·53-s         − 0.794·57-s     + 0.520·59-s     + 1.28·61-s     + 0.251·63-s         − 1.46·67-s     + 0.722·69-s     + 0.949·71-s     + 0.936·73-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 62400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 62400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 |  \( 1 \)  |    | 
 | 3 |  \( 1 - T \)  |    | 
 | 5 |  \( 1 \)  |    | 
 | 13 |  \( 1 + T \)  |    | 
| good | 7 |  \( 1 - 2 T + p T^{2} \)  |  1.7.ac  | 
 | 11 |  \( 1 - 4 T + p T^{2} \)  |  1.11.ae  | 
 | 17 |  \( 1 + 8 T + p T^{2} \)  |  1.17.i  | 
 | 19 |  \( 1 + 6 T + p T^{2} \)  |  1.19.g  | 
 | 23 |  \( 1 - 6 T + p T^{2} \)  |  1.23.ag  | 
 | 29 |  \( 1 - 4 T + p T^{2} \)  |  1.29.ae  | 
 | 31 |  \( 1 + p T^{2} \)  |  1.31.a  | 
 | 37 |  \( 1 + 2 T + p T^{2} \)  |  1.37.c  | 
 | 41 |  \( 1 + 2 T + p T^{2} \)  |  1.41.c  | 
 | 43 |  \( 1 - 4 T + p T^{2} \)  |  1.43.ae  | 
 | 47 |  \( 1 + p T^{2} \)  |  1.47.a  | 
 | 53 |  \( 1 + 10 T + p T^{2} \)  |  1.53.k  | 
 | 59 |  \( 1 - 4 T + p T^{2} \)  |  1.59.ae  | 
 | 61 |  \( 1 - 10 T + p T^{2} \)  |  1.61.ak  | 
 | 67 |  \( 1 + 12 T + p T^{2} \)  |  1.67.m  | 
 | 71 |  \( 1 - 8 T + p T^{2} \)  |  1.71.ai  | 
 | 73 |  \( 1 - 8 T + p T^{2} \)  |  1.73.ai  | 
 | 79 |  \( 1 + 8 T + p T^{2} \)  |  1.79.i  | 
 | 83 |  \( 1 + 12 T + p T^{2} \)  |  1.83.m  | 
 | 89 |  \( 1 + 14 T + p T^{2} \)  |  1.89.o  | 
 | 97 |  \( 1 - 16 T + p T^{2} \)  |  1.97.aq  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−14.45936768846967, −14.22731550044571, −13.50740343900434, −12.99474220454888, −12.69552943222671, −11.90954673979685, −11.48050602363875, −10.89880026934887, −10.66100524789105, −9.820220766064453, −9.185972985549463, −8.922697619912190, −8.360694977376551, −8.022895677981988, −6.979911033406157, −6.840636842040231, −6.342620700373621, −5.471264962961606, −4.624233397766230, −4.463882144199261, −3.856086483714176, −3.011987318142309, −2.345949590442893, −1.797389169948226, −1.115452968796426, 0, 
1.115452968796426, 1.797389169948226, 2.345949590442893, 3.011987318142309, 3.856086483714176, 4.463882144199261, 4.624233397766230, 5.471264962961606, 6.342620700373621, 6.840636842040231, 6.979911033406157, 8.022895677981988, 8.360694977376551, 8.922697619912190, 9.185972985549463, 9.820220766064453, 10.66100524789105, 10.89880026934887, 11.48050602363875, 11.90954673979685, 12.69552943222671, 12.99474220454888, 13.50740343900434, 14.22731550044571, 14.45936768846967