Properties

Label 2-62400-1.1-c1-0-24
Degree $2$
Conductor $62400$
Sign $1$
Analytic cond. $498.266$
Root an. cond. $22.3218$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s − 4·11-s + 13-s + 6·17-s + 8·19-s − 8·23-s − 27-s − 2·29-s + 8·31-s + 4·33-s − 10·37-s − 39-s + 6·41-s − 4·43-s − 7·49-s − 6·51-s − 14·53-s − 8·57-s + 12·59-s + 10·61-s − 8·67-s + 8·69-s + 14·73-s − 4·79-s + 81-s + 4·83-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s − 1.20·11-s + 0.277·13-s + 1.45·17-s + 1.83·19-s − 1.66·23-s − 0.192·27-s − 0.371·29-s + 1.43·31-s + 0.696·33-s − 1.64·37-s − 0.160·39-s + 0.937·41-s − 0.609·43-s − 49-s − 0.840·51-s − 1.92·53-s − 1.05·57-s + 1.56·59-s + 1.28·61-s − 0.977·67-s + 0.963·69-s + 1.63·73-s − 0.450·79-s + 1/9·81-s + 0.439·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 62400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 62400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(62400\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(498.266\)
Root analytic conductor: \(22.3218\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 62400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.543995095\)
\(L(\frac12)\) \(\approx\) \(1.543995095\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.09802955044329, −13.84715392228623, −13.30514946740455, −12.55778527219685, −12.31396538084870, −11.69715835460193, −11.37344821116505, −10.66098785239871, −10.08206929290175, −9.862247756850245, −9.395814939804243, −8.237195187574822, −8.147183304996328, −7.570797751402903, −6.987070436524886, −6.316721000774767, −5.634423004309747, −5.377266757161087, −4.858917850688850, −4.027907392246661, −3.349396669958027, −2.909326735978040, −1.967598499279262, −1.253575628280757, −0.4668446157451165, 0.4668446157451165, 1.253575628280757, 1.967598499279262, 2.909326735978040, 3.349396669958027, 4.027907392246661, 4.858917850688850, 5.377266757161087, 5.634423004309747, 6.316721000774767, 6.987070436524886, 7.570797751402903, 8.147183304996328, 8.237195187574822, 9.395814939804243, 9.862247756850245, 10.08206929290175, 10.66098785239871, 11.37344821116505, 11.69715835460193, 12.31396538084870, 12.55778527219685, 13.30514946740455, 13.84715392228623, 14.09802955044329

Graph of the $Z$-function along the critical line