Properties

Label 2-6240-1.1-c1-0-32
Degree $2$
Conductor $6240$
Sign $1$
Analytic cond. $49.8266$
Root an. cond. $7.05879$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 2·7-s + 9-s − 13-s − 15-s + 4·17-s + 2·19-s − 2·21-s + 6·23-s + 25-s − 27-s + 4·31-s + 2·35-s − 2·37-s + 39-s − 6·41-s + 4·43-s + 45-s + 4·47-s − 3·49-s − 4·51-s − 10·53-s − 2·57-s + 8·59-s + 6·61-s + 2·63-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 0.755·7-s + 1/3·9-s − 0.277·13-s − 0.258·15-s + 0.970·17-s + 0.458·19-s − 0.436·21-s + 1.25·23-s + 1/5·25-s − 0.192·27-s + 0.718·31-s + 0.338·35-s − 0.328·37-s + 0.160·39-s − 0.937·41-s + 0.609·43-s + 0.149·45-s + 0.583·47-s − 3/7·49-s − 0.560·51-s − 1.37·53-s − 0.264·57-s + 1.04·59-s + 0.768·61-s + 0.251·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6240\)    =    \(2^{5} \cdot 3 \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(49.8266\)
Root analytic conductor: \(7.05879\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6240,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.167894624\)
\(L(\frac12)\) \(\approx\) \(2.167894624\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
13 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.991785692066881989630658961876, −7.29217966111429915708361251067, −6.64423311018434721084215502611, −5.81027128270552578570912853476, −5.13991218018497787389765808906, −4.73679541195531233051277867723, −3.63042363848013260991655415374, −2.73882448578956584605360995055, −1.66284645711473060254756457206, −0.845916286672162984679868780104, 0.845916286672162984679868780104, 1.66284645711473060254756457206, 2.73882448578956584605360995055, 3.63042363848013260991655415374, 4.73679541195531233051277867723, 5.13991218018497787389765808906, 5.81027128270552578570912853476, 6.64423311018434721084215502611, 7.29217966111429915708361251067, 7.991785692066881989630658961876

Graph of the $Z$-function along the critical line