Properties

Label 2-59150-1.1-c1-0-19
Degree $2$
Conductor $59150$
Sign $1$
Analytic cond. $472.315$
Root an. cond. $21.7328$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2·3-s + 4-s − 2·6-s + 7-s − 8-s + 9-s + 2·12-s − 14-s + 16-s − 18-s − 2·19-s + 2·21-s + 6·23-s − 2·24-s − 4·27-s + 28-s + 6·29-s − 8·31-s − 32-s + 36-s − 10·37-s + 2·38-s + 12·41-s − 2·42-s + 4·43-s − 6·46-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.15·3-s + 1/2·4-s − 0.816·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.577·12-s − 0.267·14-s + 1/4·16-s − 0.235·18-s − 0.458·19-s + 0.436·21-s + 1.25·23-s − 0.408·24-s − 0.769·27-s + 0.188·28-s + 1.11·29-s − 1.43·31-s − 0.176·32-s + 1/6·36-s − 1.64·37-s + 0.324·38-s + 1.87·41-s − 0.308·42-s + 0.609·43-s − 0.884·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 59150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 59150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(59150\)    =    \(2 \cdot 5^{2} \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(472.315\)
Root analytic conductor: \(21.7328\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 59150,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.582783921\)
\(L(\frac12)\) \(\approx\) \(2.582783921\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
7 \( 1 - T \)
13 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.35478976032820, −14.09907584180873, −13.19831782851946, −13.01942876843409, −12.25480212718663, −11.76917021977286, −11.13254076532948, −10.59697395734457, −10.32302006738435, −9.391031578131678, −9.103063419975848, −8.727801236801871, −8.231621851490126, −7.647247041072118, −7.187755949172109, −6.732774629006391, −5.816999975730042, −5.409626217500099, −4.521133818386372, −3.949111005493545, −3.199431239964012, −2.723452518049712, −2.091319789068753, −1.452725468900023, −0.5709326933053010, 0.5709326933053010, 1.452725468900023, 2.091319789068753, 2.723452518049712, 3.199431239964012, 3.949111005493545, 4.521133818386372, 5.409626217500099, 5.816999975730042, 6.732774629006391, 7.187755949172109, 7.647247041072118, 8.231621851490126, 8.727801236801871, 9.103063419975848, 9.391031578131678, 10.32302006738435, 10.59697395734457, 11.13254076532948, 11.76917021977286, 12.25480212718663, 13.01942876843409, 13.19831782851946, 14.09907584180873, 14.35478976032820

Graph of the $Z$-function along the critical line