Properties

Label 2-58608-1.1-c1-0-2
Degree $2$
Conductor $58608$
Sign $1$
Analytic cond. $467.987$
Root an. cond. $21.6330$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s − 11-s + 4·13-s − 2·17-s + 2·19-s − 2·23-s − 5·25-s − 10·29-s + 8·31-s + 37-s + 6·41-s − 6·43-s − 4·47-s + 9·49-s + 6·53-s − 10·59-s − 12·67-s − 8·71-s + 10·73-s + 4·77-s − 2·79-s − 12·83-s − 12·89-s − 16·91-s + 2·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 1.51·7-s − 0.301·11-s + 1.10·13-s − 0.485·17-s + 0.458·19-s − 0.417·23-s − 25-s − 1.85·29-s + 1.43·31-s + 0.164·37-s + 0.937·41-s − 0.914·43-s − 0.583·47-s + 9/7·49-s + 0.824·53-s − 1.30·59-s − 1.46·67-s − 0.949·71-s + 1.17·73-s + 0.455·77-s − 0.225·79-s − 1.31·83-s − 1.27·89-s − 1.67·91-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 58608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 58608 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(58608\)    =    \(2^{4} \cdot 3^{2} \cdot 11 \cdot 37\)
Sign: $1$
Analytic conductor: \(467.987\)
Root analytic conductor: \(21.6330\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 58608,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8374439457\)
\(L(\frac12)\) \(\approx\) \(0.8374439457\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + T \)
37 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.12986203291451, −13.74687912223144, −13.21461574919437, −13.03137476102822, −12.40657942088953, −11.72532080528874, −11.37432941308244, −10.73913180761161, −10.12485103744218, −9.759488042088487, −9.246603644105032, −8.740846410627421, −8.104890830776871, −7.512851131757117, −6.987580557812617, −6.245478322712705, −6.016315895910012, −5.498937939830032, −4.533570313070153, −3.990855443736130, −3.389466724512781, −2.935643248781384, −2.125329518959127, −1.331759506767251, −0.3162845598533506, 0.3162845598533506, 1.331759506767251, 2.125329518959127, 2.935643248781384, 3.389466724512781, 3.990855443736130, 4.533570313070153, 5.498937939830032, 6.016315895910012, 6.245478322712705, 6.987580557812617, 7.512851131757117, 8.104890830776871, 8.740846410627421, 9.246603644105032, 9.759488042088487, 10.12485103744218, 10.73913180761161, 11.37432941308244, 11.72532080528874, 12.40657942088953, 13.03137476102822, 13.21461574919437, 13.74687912223144, 14.12986203291451

Graph of the $Z$-function along the critical line