Properties

Label 2-57498-1.1-c1-0-9
Degree $2$
Conductor $57498$
Sign $-1$
Analytic cond. $459.123$
Root an. cond. $21.4271$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 2·5-s + 6-s − 7-s − 8-s + 9-s + 2·10-s + 6·11-s − 12-s + 4·13-s + 14-s + 2·15-s + 16-s − 6·17-s − 18-s + 4·19-s − 2·20-s + 21-s − 6·22-s − 4·23-s + 24-s − 25-s − 4·26-s − 27-s − 28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.894·5-s + 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.632·10-s + 1.80·11-s − 0.288·12-s + 1.10·13-s + 0.267·14-s + 0.516·15-s + 1/4·16-s − 1.45·17-s − 0.235·18-s + 0.917·19-s − 0.447·20-s + 0.218·21-s − 1.27·22-s − 0.834·23-s + 0.204·24-s − 1/5·25-s − 0.784·26-s − 0.192·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 57498 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 57498 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(57498\)    =    \(2 \cdot 3 \cdot 7 \cdot 37^{2}\)
Sign: $-1$
Analytic conductor: \(459.123\)
Root analytic conductor: \(21.4271\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 57498,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
7 \( 1 + T \)
37 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.76162624584056, −14.09756263580270, −13.54658001703162, −13.11874636231435, −12.24090076539151, −11.88642630464215, −11.61588354691178, −11.05611156780443, −10.71463166636797, −9.904564046880830, −9.368694988749398, −9.053791589909793, −8.389678030994195, −7.926650893851486, −7.232879769302855, −6.710748085461033, −6.280819881115294, −5.913810890530252, −4.942048341724441, −4.142883323986510, −3.872877505395668, −3.276944508752092, −2.248461570272622, −1.455856105614000, −0.8462206920450151, 0, 0.8462206920450151, 1.455856105614000, 2.248461570272622, 3.276944508752092, 3.872877505395668, 4.142883323986510, 4.942048341724441, 5.913810890530252, 6.280819881115294, 6.710748085461033, 7.232879769302855, 7.926650893851486, 8.389678030994195, 9.053791589909793, 9.368694988749398, 9.904564046880830, 10.71463166636797, 11.05611156780443, 11.61588354691178, 11.88642630464215, 12.24090076539151, 13.11874636231435, 13.54658001703162, 14.09756263580270, 14.76162624584056

Graph of the $Z$-function along the critical line