Properties

Label 2-50616-1.1-c1-0-7
Degree $2$
Conductor $50616$
Sign $-1$
Analytic cond. $404.170$
Root an. cond. $20.1039$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s + 5·7-s − 5·11-s + 2·13-s − 7·17-s − 19-s + 4·25-s + 8·29-s − 4·31-s + 15·35-s − 37-s − 6·41-s + 11·43-s + 5·47-s + 18·49-s − 10·53-s − 15·55-s − 6·59-s + 13·61-s + 6·65-s − 2·67-s − 10·71-s − 11·73-s − 25·77-s − 14·79-s − 12·83-s − 21·85-s + ⋯
L(s)  = 1  + 1.34·5-s + 1.88·7-s − 1.50·11-s + 0.554·13-s − 1.69·17-s − 0.229·19-s + 4/5·25-s + 1.48·29-s − 0.718·31-s + 2.53·35-s − 0.164·37-s − 0.937·41-s + 1.67·43-s + 0.729·47-s + 18/7·49-s − 1.37·53-s − 2.02·55-s − 0.781·59-s + 1.66·61-s + 0.744·65-s − 0.244·67-s − 1.18·71-s − 1.28·73-s − 2.84·77-s − 1.57·79-s − 1.31·83-s − 2.27·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 50616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(50616\)    =    \(2^{3} \cdot 3^{2} \cdot 19 \cdot 37\)
Sign: $-1$
Analytic conductor: \(404.170\)
Root analytic conductor: \(20.1039\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 50616,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 + T \)
37 \( 1 + T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 - 5 T + p T^{2} \) 1.7.af
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 7 T + p T^{2} \) 1.17.h
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 4 T + p T^{2} \) 1.31.e
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 - 5 T + p T^{2} \) 1.47.af
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 13 T + p T^{2} \) 1.61.an
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.58810987580601, −14.21903753414921, −13.70916276595223, −13.37810038175991, −12.86585635250058, −12.28808943926335, −11.47843767231491, −11.05565408147215, −10.65749301151445, −10.30705767846098, −9.600118064823393, −8.860249664164103, −8.486316255757202, −8.146990535438159, −7.301977673792646, −6.919680832418551, −5.902197672504738, −5.765233951853289, −5.001280503303461, −4.617126455345978, −4.073928160891396, −2.692940626419446, −2.522729636968893, −1.718112752388468, −1.293696294112502, 0, 1.293696294112502, 1.718112752388468, 2.522729636968893, 2.692940626419446, 4.073928160891396, 4.617126455345978, 5.001280503303461, 5.765233951853289, 5.902197672504738, 6.919680832418551, 7.301977673792646, 8.146990535438159, 8.486316255757202, 8.860249664164103, 9.600118064823393, 10.30705767846098, 10.65749301151445, 11.05565408147215, 11.47843767231491, 12.28808943926335, 12.86585635250058, 13.37810038175991, 13.70916276595223, 14.21903753414921, 14.58810987580601

Graph of the $Z$-function along the critical line