Properties

Label 2-49725-1.1-c1-0-5
Degree $2$
Conductor $49725$
Sign $1$
Analytic cond. $397.056$
Root an. cond. $19.9262$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 2·7-s + 3·8-s + 2·11-s + 13-s − 2·14-s − 16-s + 17-s − 2·22-s − 8·23-s − 26-s − 2·28-s + 6·29-s + 6·31-s − 5·32-s − 34-s − 4·37-s + 12·41-s + 4·43-s − 2·44-s + 8·46-s − 3·49-s − 52-s − 6·53-s + 6·56-s − 6·58-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 0.755·7-s + 1.06·8-s + 0.603·11-s + 0.277·13-s − 0.534·14-s − 1/4·16-s + 0.242·17-s − 0.426·22-s − 1.66·23-s − 0.196·26-s − 0.377·28-s + 1.11·29-s + 1.07·31-s − 0.883·32-s − 0.171·34-s − 0.657·37-s + 1.87·41-s + 0.609·43-s − 0.301·44-s + 1.17·46-s − 3/7·49-s − 0.138·52-s − 0.824·53-s + 0.801·56-s − 0.787·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49725 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(49725\)    =    \(3^{2} \cdot 5^{2} \cdot 13 \cdot 17\)
Sign: $1$
Analytic conductor: \(397.056\)
Root analytic conductor: \(19.9262\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 49725,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.593905683\)
\(L(\frac12)\) \(\approx\) \(1.593905683\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
13 \( 1 - T \)
17 \( 1 - T \)
good2 \( 1 + T + p T^{2} \) 1.2.b
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.35962152806353, −13.93501819117744, −13.86314315625809, −12.92595266352607, −12.46904245163637, −11.85631965605343, −11.45693651358603, −10.73912780837563, −10.33293196551706, −9.842931326040873, −9.239880978622464, −8.814936959070219, −8.171604196134532, −7.879025698566919, −7.390382189794641, −6.445251911767253, −6.106819473762842, −5.281278900624305, −4.650400319292491, −4.222289522331916, −3.649153801543428, −2.698697528319882, −1.871620731536229, −1.253539742941542, −0.5631946575207538, 0.5631946575207538, 1.253539742941542, 1.871620731536229, 2.698697528319882, 3.649153801543428, 4.222289522331916, 4.650400319292491, 5.281278900624305, 6.106819473762842, 6.445251911767253, 7.390382189794641, 7.879025698566919, 8.171604196134532, 8.814936959070219, 9.239880978622464, 9.842931326040873, 10.33293196551706, 10.73912780837563, 11.45693651358603, 11.85631965605343, 12.46904245163637, 12.92595266352607, 13.86314315625809, 13.93501819117744, 14.35962152806353

Graph of the $Z$-function along the critical line