Properties

Label 49725.i
Number of curves $2$
Conductor $49725$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 49725.i have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1\)
\(13\)\(1 - T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 49725.i do not have complex multiplication.

Modular form 49725.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} + 2 q^{7} + 3 q^{8} + 2 q^{11} + q^{13} - 2 q^{14} - q^{16} + q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 49725.i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
49725.i1 49725q2 \([1, -1, 1, -22055, -963678]\) \(104154702625/24649677\) \(280775227078125\) \([2]\) \(147456\) \(1.4839\)  
49725.i2 49725q1 \([1, -1, 1, -7430, 235572]\) \(3981876625/232713\) \(2650746515625\) \([2]\) \(73728\) \(1.1373\) \(\Gamma_0(N)\)-optimal