Properties

Label 2-4800-1.1-c1-0-2
Degree $2$
Conductor $4800$
Sign $1$
Analytic cond. $38.3281$
Root an. cond. $6.19097$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4·7-s + 9-s + 2·13-s − 6·17-s − 4·19-s + 4·21-s − 27-s + 6·29-s − 8·31-s + 2·37-s − 2·39-s − 6·41-s + 4·43-s + 9·49-s + 6·51-s − 6·53-s + 4·57-s + 10·61-s − 4·63-s + 4·67-s − 2·73-s − 8·79-s + 81-s − 12·83-s − 6·87-s + 18·89-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.51·7-s + 1/3·9-s + 0.554·13-s − 1.45·17-s − 0.917·19-s + 0.872·21-s − 0.192·27-s + 1.11·29-s − 1.43·31-s + 0.328·37-s − 0.320·39-s − 0.937·41-s + 0.609·43-s + 9/7·49-s + 0.840·51-s − 0.824·53-s + 0.529·57-s + 1.28·61-s − 0.503·63-s + 0.488·67-s − 0.234·73-s − 0.900·79-s + 1/9·81-s − 1.31·83-s − 0.643·87-s + 1.90·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4800\)    =    \(2^{6} \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(38.3281\)
Root analytic conductor: \(6.19097\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7326314990\)
\(L(\frac12)\) \(\approx\) \(0.7326314990\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.468240536036555704630848503198, −7.31357774249742150991297991120, −6.59910634542849161459156625156, −6.32472569150928839317323168550, −5.49712735041431211178430480723, −4.49368181982186146386252774551, −3.82348229275525279836763542718, −2.92788308932045914068085173884, −1.92466750882191143426507910728, −0.46487860020891297578644501903, 0.46487860020891297578644501903, 1.92466750882191143426507910728, 2.92788308932045914068085173884, 3.82348229275525279836763542718, 4.49368181982186146386252774551, 5.49712735041431211178430480723, 6.32472569150928839317323168550, 6.59910634542849161459156625156, 7.31357774249742150991297991120, 8.468240536036555704630848503198

Graph of the $Z$-function along the critical line