Properties

Label 2-4680-1.1-c1-0-7
Degree $2$
Conductor $4680$
Sign $1$
Analytic cond. $37.3699$
Root an. cond. $6.11309$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 2·7-s − 4·11-s − 13-s − 8·17-s − 2·19-s − 4·23-s + 25-s + 8·29-s + 10·31-s − 2·35-s + 6·37-s − 6·41-s − 8·43-s + 8·47-s − 3·49-s + 12·53-s + 4·55-s + 4·59-s + 10·61-s + 65-s + 2·67-s + 6·73-s − 8·77-s + 12·79-s + 4·83-s + 8·85-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.755·7-s − 1.20·11-s − 0.277·13-s − 1.94·17-s − 0.458·19-s − 0.834·23-s + 1/5·25-s + 1.48·29-s + 1.79·31-s − 0.338·35-s + 0.986·37-s − 0.937·41-s − 1.21·43-s + 1.16·47-s − 3/7·49-s + 1.64·53-s + 0.539·55-s + 0.520·59-s + 1.28·61-s + 0.124·65-s + 0.244·67-s + 0.702·73-s − 0.911·77-s + 1.35·79-s + 0.439·83-s + 0.867·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4680\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(37.3699\)
Root analytic conductor: \(6.11309\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4680,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.370708215\)
\(L(\frac12)\) \(\approx\) \(1.370708215\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
13 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 + 8 T + p T^{2} \) 1.17.i
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.392475829969510381401781311959, −7.74238112049599024533718048576, −6.81531531819536411511662295224, −6.27920097741182817948407464345, −5.09604613832881741539687762080, −4.68099993500533399961817521131, −3.94440097116773684012776351687, −2.64389855668014195095493639358, −2.15847934948711881880709546475, −0.62406490911934408422076009247, 0.62406490911934408422076009247, 2.15847934948711881880709546475, 2.64389855668014195095493639358, 3.94440097116773684012776351687, 4.68099993500533399961817521131, 5.09604613832881741539687762080, 6.27920097741182817948407464345, 6.81531531819536411511662295224, 7.74238112049599024533718048576, 8.392475829969510381401781311959

Graph of the $Z$-function along the critical line