Properties

Label 2-41280-1.1-c1-0-4
Degree $2$
Conductor $41280$
Sign $1$
Analytic cond. $329.622$
Root an. cond. $18.1555$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s − 4·7-s + 9-s − 2·13-s − 15-s + 2·17-s − 4·19-s + 4·21-s + 25-s − 27-s + 6·29-s + 8·31-s − 4·35-s + 6·37-s + 2·39-s + 10·41-s + 43-s + 45-s + 9·49-s − 2·51-s + 6·53-s + 4·57-s − 2·61-s − 4·63-s − 2·65-s − 12·67-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 1.51·7-s + 1/3·9-s − 0.554·13-s − 0.258·15-s + 0.485·17-s − 0.917·19-s + 0.872·21-s + 1/5·25-s − 0.192·27-s + 1.11·29-s + 1.43·31-s − 0.676·35-s + 0.986·37-s + 0.320·39-s + 1.56·41-s + 0.152·43-s + 0.149·45-s + 9/7·49-s − 0.280·51-s + 0.824·53-s + 0.529·57-s − 0.256·61-s − 0.503·63-s − 0.248·65-s − 1.46·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 41280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 41280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(41280\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 43\)
Sign: $1$
Analytic conductor: \(329.622\)
Root analytic conductor: \(18.1555\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 41280,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.339709382\)
\(L(\frac12)\) \(\approx\) \(1.339709382\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
43 \( 1 - T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.72714516641768, −14.24561709857806, −13.53271269104652, −13.16446722624410, −12.63536951513616, −12.24685422022020, −11.75729299225476, −11.04081973513321, −10.30173708001235, −10.13628048676217, −9.634195287499582, −9.013137373682419, −8.480295766424484, −7.613464295887997, −7.153109610520778, −6.430258978292654, −6.091805786712343, −5.747126821195161, −4.689815116719277, −4.421637582591039, −3.517039177720757, −2.766590028716197, −2.394740616923033, −1.196298993012913, −0.4766272055870879, 0.4766272055870879, 1.196298993012913, 2.394740616923033, 2.766590028716197, 3.517039177720757, 4.421637582591039, 4.689815116719277, 5.747126821195161, 6.091805786712343, 6.430258978292654, 7.153109610520778, 7.613464295887997, 8.480295766424484, 9.013137373682419, 9.634195287499582, 10.13628048676217, 10.30173708001235, 11.04081973513321, 11.75729299225476, 12.24685422022020, 12.63536951513616, 13.16446722624410, 13.53271269104652, 14.24561709857806, 14.72714516641768

Graph of the $Z$-function along the critical line