Properties

Label 2-397488-1.1-c1-0-40
Degree $2$
Conductor $397488$
Sign $1$
Analytic cond. $3173.95$
Root an. cond. $56.3378$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 4·5-s + 9-s + 2·11-s − 4·15-s − 6·17-s + 2·19-s + 8·23-s + 11·25-s + 27-s + 6·29-s − 10·31-s + 2·33-s + 4·37-s − 4·43-s − 4·45-s + 2·47-s − 6·51-s − 10·53-s − 8·55-s + 2·57-s + 14·59-s + 2·61-s − 2·67-s + 8·69-s − 6·71-s − 8·73-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.78·5-s + 1/3·9-s + 0.603·11-s − 1.03·15-s − 1.45·17-s + 0.458·19-s + 1.66·23-s + 11/5·25-s + 0.192·27-s + 1.11·29-s − 1.79·31-s + 0.348·33-s + 0.657·37-s − 0.609·43-s − 0.596·45-s + 0.291·47-s − 0.840·51-s − 1.37·53-s − 1.07·55-s + 0.264·57-s + 1.82·59-s + 0.256·61-s − 0.244·67-s + 0.963·69-s − 0.712·71-s − 0.936·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 397488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 397488 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(397488\)    =    \(2^{4} \cdot 3 \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(3173.95\)
Root analytic conductor: \(56.3378\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 397488,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.463184511\)
\(L(\frac12)\) \(\approx\) \(1.463184511\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
13 \( 1 \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.57746112407627, −11.79706297527611, −11.46771899044386, −11.34109527390672, −10.66147335516955, −10.38306574868010, −9.512233967408521, −9.136795005737157, −8.750246867707545, −8.449785254506301, −7.864226274883197, −7.427429594381165, −6.964204207387819, −6.767525113796400, −6.116457432100873, −5.194253433473822, −4.892722769117100, −4.265655325064920, −3.989716162208139, −3.448229212864918, −2.945107068365981, −2.518901100788706, −1.615402888073645, −1.050237410723959, −0.3339465613894757, 0.3339465613894757, 1.050237410723959, 1.615402888073645, 2.518901100788706, 2.945107068365981, 3.448229212864918, 3.989716162208139, 4.265655325064920, 4.892722769117100, 5.194253433473822, 6.116457432100873, 6.767525113796400, 6.964204207387819, 7.427429594381165, 7.864226274883197, 8.449785254506301, 8.750246867707545, 9.136795005737157, 9.512233967408521, 10.38306574868010, 10.66147335516955, 11.34109527390672, 11.46771899044386, 11.79706297527611, 12.57746112407627

Graph of the $Z$-function along the critical line