Properties

Label 2-394944-1.1-c1-0-126
Degree $2$
Conductor $394944$
Sign $-1$
Analytic cond. $3153.64$
Root an. cond. $56.1573$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s − 4·7-s + 9-s + 2·13-s + 2·15-s − 17-s − 4·19-s + 4·21-s + 4·23-s − 25-s − 27-s + 6·29-s + 8·31-s + 8·35-s + 2·37-s − 2·39-s + 6·41-s − 4·43-s − 2·45-s − 4·47-s + 9·49-s + 51-s − 2·53-s + 4·57-s − 4·59-s + 10·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s − 1.51·7-s + 1/3·9-s + 0.554·13-s + 0.516·15-s − 0.242·17-s − 0.917·19-s + 0.872·21-s + 0.834·23-s − 1/5·25-s − 0.192·27-s + 1.11·29-s + 1.43·31-s + 1.35·35-s + 0.328·37-s − 0.320·39-s + 0.937·41-s − 0.609·43-s − 0.298·45-s − 0.583·47-s + 9/7·49-s + 0.140·51-s − 0.274·53-s + 0.529·57-s − 0.520·59-s + 1.28·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 394944 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 394944 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(394944\)    =    \(2^{6} \cdot 3 \cdot 11^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(3153.64\)
Root analytic conductor: \(56.1573\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 394944,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 \)
17 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.66923208376761, −12.29547239312563, −11.73273924385600, −11.32167696875784, −10.97554366276307, −10.42158363638799, −9.990551783413852, −9.611681303844562, −9.103450621072074, −8.484138228561785, −8.180327498385795, −7.683018773574245, −6.900062387208125, −6.671748218687275, −6.363593193740082, −5.867328773389864, −5.208410765898989, −4.616953850123732, −4.223414189800599, −3.661103002803599, −3.269562232370437, −2.664340745836424, −2.122594473996310, −1.065076250228320, −0.6625507237108609, 0, 0.6625507237108609, 1.065076250228320, 2.122594473996310, 2.664340745836424, 3.269562232370437, 3.661103002803599, 4.223414189800599, 4.616953850123732, 5.208410765898989, 5.867328773389864, 6.363593193740082, 6.671748218687275, 6.900062387208125, 7.683018773574245, 8.180327498385795, 8.484138228561785, 9.103450621072074, 9.611681303844562, 9.990551783413852, 10.42158363638799, 10.97554366276307, 11.32167696875784, 11.73273924385600, 12.29547239312563, 12.66923208376761

Graph of the $Z$-function along the critical line