Properties

Label 2-374400-1.1-c1-0-252
Degree $2$
Conductor $374400$
Sign $-1$
Analytic cond. $2989.59$
Root an. cond. $54.6772$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s − 13-s − 2·17-s + 4·19-s + 2·23-s + 6·29-s + 2·31-s + 2·37-s − 6·41-s − 12·43-s − 8·47-s + 9·49-s − 6·53-s + 4·59-s − 10·61-s + 14·67-s + 6·71-s + 6·73-s + 4·79-s − 6·83-s + 2·89-s − 4·91-s − 6·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 1.51·7-s − 0.277·13-s − 0.485·17-s + 0.917·19-s + 0.417·23-s + 1.11·29-s + 0.359·31-s + 0.328·37-s − 0.937·41-s − 1.82·43-s − 1.16·47-s + 9/7·49-s − 0.824·53-s + 0.520·59-s − 1.28·61-s + 1.71·67-s + 0.712·71-s + 0.702·73-s + 0.450·79-s − 0.658·83-s + 0.211·89-s − 0.419·91-s − 0.609·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 374400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 374400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(374400\)    =    \(2^{7} \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(2989.59\)
Root analytic conductor: \(54.6772\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 374400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 + T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.62672147470741, −12.16608564104700, −11.74927849704245, −11.30062252375311, −11.13500386994259, −10.45202265295751, −10.03839726925795, −9.580470625032370, −9.071630596243206, −8.462130264389120, −8.064268679048561, −7.958406413599237, −7.176823528757061, −6.706849609181015, −6.410753488176491, −5.547933153402821, −5.104204718786259, −4.833136175474569, −4.425715077526685, −3.660952104944677, −3.159739107960043, −2.560559476990277, −1.924385180420354, −1.435989315329836, −0.9024347655522865, 0, 0.9024347655522865, 1.435989315329836, 1.924385180420354, 2.560559476990277, 3.159739107960043, 3.660952104944677, 4.425715077526685, 4.833136175474569, 5.104204718786259, 5.547933153402821, 6.410753488176491, 6.706849609181015, 7.176823528757061, 7.958406413599237, 8.064268679048561, 8.462130264389120, 9.071630596243206, 9.580470625032370, 10.03839726925795, 10.45202265295751, 11.13500386994259, 11.30062252375311, 11.74927849704245, 12.16608564104700, 12.62672147470741

Graph of the $Z$-function along the critical line