Properties

Label 2-36992-1.1-c1-0-2
Degree $2$
Conductor $36992$
Sign $1$
Analytic cond. $295.382$
Root an. cond. $17.1866$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 2·5-s − 4·7-s + 9-s + 2·11-s − 2·13-s − 4·15-s + 2·19-s + 8·21-s + 4·23-s − 25-s + 4·27-s − 6·29-s − 4·33-s − 8·35-s + 10·37-s + 4·39-s + 6·41-s + 6·43-s + 2·45-s + 8·47-s + 9·49-s + 6·53-s + 4·55-s − 4·57-s + 14·59-s + 2·61-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.894·5-s − 1.51·7-s + 1/3·9-s + 0.603·11-s − 0.554·13-s − 1.03·15-s + 0.458·19-s + 1.74·21-s + 0.834·23-s − 1/5·25-s + 0.769·27-s − 1.11·29-s − 0.696·33-s − 1.35·35-s + 1.64·37-s + 0.640·39-s + 0.937·41-s + 0.914·43-s + 0.298·45-s + 1.16·47-s + 9/7·49-s + 0.824·53-s + 0.539·55-s − 0.529·57-s + 1.82·59-s + 0.256·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 36992 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 36992 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(36992\)    =    \(2^{7} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(295.382\)
Root analytic conductor: \(17.1866\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 36992,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.332662312\)
\(L(\frac12)\) \(\approx\) \(1.332662312\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
17 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.72566147032229, −14.44601341616590, −13.71402580397446, −13.12447353111420, −12.81264623851238, −12.35078603804189, −11.64652019369567, −11.27798855750144, −10.68132929212738, −9.895117337686521, −9.798240003917594, −9.177346395212567, −8.717794538174104, −7.581404334634324, −7.118467798960168, −6.547697687393342, −6.036925772700611, −5.648072609907771, −5.212155897113223, −4.240924260842169, −3.725721240434973, −2.743463938215240, −2.361827742602419, −1.126785817064051, −0.5253789302079340, 0.5253789302079340, 1.126785817064051, 2.361827742602419, 2.743463938215240, 3.725721240434973, 4.240924260842169, 5.212155897113223, 5.648072609907771, 6.036925772700611, 6.547697687393342, 7.118467798960168, 7.581404334634324, 8.717794538174104, 9.177346395212567, 9.798240003917594, 9.895117337686521, 10.68132929212738, 11.27798855750144, 11.64652019369567, 12.35078603804189, 12.81264623851238, 13.12447353111420, 13.71402580397446, 14.44601341616590, 14.72566147032229

Graph of the $Z$-function along the critical line