Properties

Label 2-369600-1.1-c1-0-439
Degree $2$
Conductor $369600$
Sign $-1$
Analytic cond. $2951.27$
Root an. cond. $54.3256$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s + 9-s + 11-s + 2·13-s − 6·17-s + 4·19-s − 21-s + 27-s − 6·29-s + 8·31-s + 33-s − 10·37-s + 2·39-s − 6·41-s + 8·43-s + 49-s − 6·51-s + 6·53-s + 4·57-s − 12·59-s − 2·61-s − 63-s − 4·67-s + 12·71-s + 10·73-s − 77-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s + 1/3·9-s + 0.301·11-s + 0.554·13-s − 1.45·17-s + 0.917·19-s − 0.218·21-s + 0.192·27-s − 1.11·29-s + 1.43·31-s + 0.174·33-s − 1.64·37-s + 0.320·39-s − 0.937·41-s + 1.21·43-s + 1/7·49-s − 0.840·51-s + 0.824·53-s + 0.529·57-s − 1.56·59-s − 0.256·61-s − 0.125·63-s − 0.488·67-s + 1.42·71-s + 1.17·73-s − 0.113·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 369600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 369600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(369600\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(2951.27\)
Root analytic conductor: \(54.3256\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 369600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 + T \)
11 \( 1 - T \)
good13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.88192415996077, −12.20398194536337, −11.91093423734975, −11.34779056982064, −10.92116946271918, −10.43873835589559, −10.00557931601078, −9.393472661297443, −9.139773013828230, −8.641491641016900, −8.330334296563090, −7.586718924061411, −7.314487426121120, −6.644916781243743, −6.427274000061906, −5.781097889723319, −5.238353792149150, −4.636403752889918, −4.208646032160804, −3.531565428242231, −3.320047761850859, −2.570507392266422, −2.076269447915473, −1.488201416733640, −0.8014252154999612, 0, 0.8014252154999612, 1.488201416733640, 2.076269447915473, 2.570507392266422, 3.320047761850859, 3.531565428242231, 4.208646032160804, 4.636403752889918, 5.238353792149150, 5.781097889723319, 6.427274000061906, 6.644916781243743, 7.314487426121120, 7.586718924061411, 8.330334296563090, 8.641491641016900, 9.139773013828230, 9.393472661297443, 10.00557931601078, 10.43873835589559, 10.92116946271918, 11.34779056982064, 11.91093423734975, 12.20398194536337, 12.88192415996077

Graph of the $Z$-function along the critical line