Properties

Label 2-363888-1.1-c1-0-90
Degree $2$
Conductor $363888$
Sign $-1$
Analytic cond. $2905.66$
Root an. cond. $53.9041$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 7-s − 2·13-s − 2·17-s + 8·23-s − 25-s + 2·29-s + 4·31-s − 2·35-s − 2·37-s + 6·41-s + 12·43-s − 8·47-s + 49-s + 10·53-s + 4·59-s − 10·61-s + 4·65-s + 4·67-s − 8·71-s + 10·73-s − 4·79-s + 4·85-s + 6·89-s − 2·91-s + 6·97-s + 101-s + ⋯
L(s)  = 1  − 0.894·5-s + 0.377·7-s − 0.554·13-s − 0.485·17-s + 1.66·23-s − 1/5·25-s + 0.371·29-s + 0.718·31-s − 0.338·35-s − 0.328·37-s + 0.937·41-s + 1.82·43-s − 1.16·47-s + 1/7·49-s + 1.37·53-s + 0.520·59-s − 1.28·61-s + 0.496·65-s + 0.488·67-s − 0.949·71-s + 1.17·73-s − 0.450·79-s + 0.433·85-s + 0.635·89-s − 0.209·91-s + 0.609·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363888 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363888\)    =    \(2^{4} \cdot 3^{2} \cdot 7 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(2905.66\)
Root analytic conductor: \(53.9041\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 363888,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
19 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.71688875748055, −12.18251997314809, −11.86624800658604, −11.36374906526828, −11.02647604844421, −10.55759312425071, −10.14704182705128, −9.366562011843727, −9.179364774541328, −8.614457052666462, −8.102293273044359, −7.712891006180957, −7.277135782206184, −6.831160757955307, −6.364472499892775, −5.651306751670860, −5.227841804544448, −4.598135826075937, −4.348530822686791, −3.776001868034123, −3.136111688267971, −2.625863299778012, −2.151778261572667, −1.245271752386194, −0.7684480336610716, 0, 0.7684480336610716, 1.245271752386194, 2.151778261572667, 2.625863299778012, 3.136111688267971, 3.776001868034123, 4.348530822686791, 4.598135826075937, 5.227841804544448, 5.651306751670860, 6.364472499892775, 6.831160757955307, 7.277135782206184, 7.712891006180957, 8.102293273044359, 8.614457052666462, 9.179364774541328, 9.366562011843727, 10.14704182705128, 10.55759312425071, 11.02647604844421, 11.36374906526828, 11.86624800658604, 12.18251997314809, 12.71688875748055

Graph of the $Z$-function along the critical line