Properties

Label 2-35550-1.1-c1-0-24
Degree $2$
Conductor $35550$
Sign $-1$
Analytic cond. $283.868$
Root an. cond. $16.8483$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 2·7-s − 8-s + 11-s + 2·13-s + 2·14-s + 16-s + 17-s − 19-s − 22-s + 6·23-s − 2·26-s − 2·28-s + 6·29-s − 2·31-s − 32-s − 34-s − 10·37-s + 38-s − 7·41-s + 8·43-s + 44-s − 6·46-s − 8·47-s − 3·49-s + 2·52-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.755·7-s − 0.353·8-s + 0.301·11-s + 0.554·13-s + 0.534·14-s + 1/4·16-s + 0.242·17-s − 0.229·19-s − 0.213·22-s + 1.25·23-s − 0.392·26-s − 0.377·28-s + 1.11·29-s − 0.359·31-s − 0.176·32-s − 0.171·34-s − 1.64·37-s + 0.162·38-s − 1.09·41-s + 1.21·43-s + 0.150·44-s − 0.884·46-s − 1.16·47-s − 3/7·49-s + 0.277·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35550\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 79\)
Sign: $-1$
Analytic conductor: \(283.868\)
Root analytic conductor: \(16.8483\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 35550,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
79 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - T + p T^{2} \) 1.17.ab
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 7 T + p T^{2} \) 1.41.h
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 11 T + p T^{2} \) 1.67.l
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 11 T + p T^{2} \) 1.73.al
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.24571678915138, −14.84886000509996, −14.09646688413419, −13.63711410161060, −13.05281567386205, −12.45670978439780, −12.09203125376025, −11.35121233603375, −10.94160137744099, −10.22515782965503, −10.00917580936238, −9.194190664972816, −8.788357452220075, −8.407344317630180, −7.589687494603809, −6.981016020454386, −6.606604693083922, −6.018820600839340, −5.308699852911917, −4.648941471486729, −3.706577880493583, −3.258391074370061, −2.581176857889181, −1.649022503105497, −0.9635405850591003, 0, 0.9635405850591003, 1.649022503105497, 2.581176857889181, 3.258391074370061, 3.706577880493583, 4.648941471486729, 5.308699852911917, 6.018820600839340, 6.606604693083922, 6.981016020454386, 7.589687494603809, 8.407344317630180, 8.788357452220075, 9.194190664972816, 10.00917580936238, 10.22515782965503, 10.94160137744099, 11.35121233603375, 12.09203125376025, 12.45670978439780, 13.05281567386205, 13.63711410161060, 14.09646688413419, 14.84886000509996, 15.24571678915138

Graph of the $Z$-function along the critical line