Properties

Label 2-34848-1.1-c1-0-45
Degree $2$
Conductor $34848$
Sign $-1$
Analytic cond. $278.262$
Root an. cond. $16.6812$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 4·7-s + 2·13-s − 6·17-s + 4·19-s − 25-s + 2·29-s + 4·31-s − 8·35-s − 2·37-s + 2·41-s − 4·43-s − 8·47-s + 9·49-s − 10·53-s + 4·59-s − 6·61-s − 4·65-s + 4·67-s + 16·71-s + 6·73-s − 4·79-s + 12·83-s + 12·85-s − 10·89-s + 8·91-s − 8·95-s + ⋯
L(s)  = 1  − 0.894·5-s + 1.51·7-s + 0.554·13-s − 1.45·17-s + 0.917·19-s − 1/5·25-s + 0.371·29-s + 0.718·31-s − 1.35·35-s − 0.328·37-s + 0.312·41-s − 0.609·43-s − 1.16·47-s + 9/7·49-s − 1.37·53-s + 0.520·59-s − 0.768·61-s − 0.496·65-s + 0.488·67-s + 1.89·71-s + 0.702·73-s − 0.450·79-s + 1.31·83-s + 1.30·85-s − 1.05·89-s + 0.838·91-s − 0.820·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 34848 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 34848 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(34848\)    =    \(2^{5} \cdot 3^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(278.262\)
Root analytic conductor: \(16.6812\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 34848,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.26796454445225, −14.76507752469656, −14.15314171793565, −13.67196761489512, −13.29693308626416, −12.35246456759778, −12.04628740346188, −11.33247356415106, −11.14104573080138, −10.76788527212480, −9.809256060126891, −9.325225037732931, −8.525797756680857, −8.045513978164775, −7.989483937820556, −6.999428386540348, −6.643795238439823, −5.779850256736260, −5.012316245763178, −4.665273724916478, −4.036119934092327, −3.414795863819597, −2.537946314388652, −1.753723417876367, −1.074528620775553, 0, 1.074528620775553, 1.753723417876367, 2.537946314388652, 3.414795863819597, 4.036119934092327, 4.665273724916478, 5.012316245763178, 5.779850256736260, 6.643795238439823, 6.999428386540348, 7.989483937820556, 8.045513978164775, 8.525797756680857, 9.325225037732931, 9.809256060126891, 10.76788527212480, 11.14104573080138, 11.33247356415106, 12.04628740346188, 12.35246456759778, 13.29693308626416, 13.67196761489512, 14.15314171793565, 14.76507752469656, 15.26796454445225

Graph of the $Z$-function along the critical line