Properties

Label 2-346560-1.1-c1-0-130
Degree $2$
Conductor $346560$
Sign $-1$
Analytic cond. $2767.29$
Root an. cond. $52.6050$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 4·7-s + 9-s + 2·13-s + 15-s + 2·17-s + 4·21-s + 25-s − 27-s − 6·29-s + 8·31-s + 4·35-s + 2·37-s − 2·39-s − 6·41-s − 8·43-s − 45-s + 8·47-s + 9·49-s − 2·51-s − 10·53-s − 12·59-s + 2·61-s − 4·63-s − 2·65-s + 4·67-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 1.51·7-s + 1/3·9-s + 0.554·13-s + 0.258·15-s + 0.485·17-s + 0.872·21-s + 1/5·25-s − 0.192·27-s − 1.11·29-s + 1.43·31-s + 0.676·35-s + 0.328·37-s − 0.320·39-s − 0.937·41-s − 1.21·43-s − 0.149·45-s + 1.16·47-s + 9/7·49-s − 0.280·51-s − 1.37·53-s − 1.56·59-s + 0.256·61-s − 0.503·63-s − 0.248·65-s + 0.488·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 346560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 346560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(346560\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(2767.29\)
Root analytic conductor: \(52.6050\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 346560,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
19 \( 1 \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.79977950401346, −12.30186483168343, −11.79227076956841, −11.66095970413526, −10.80596174365167, −10.64732403449409, −10.04957923114132, −9.622071699854688, −9.300678700895418, −8.693216897304856, −8.170254885398333, −7.672160401321169, −7.191147751486330, −6.569826963802577, −6.393015274987322, −5.851691722415574, −5.397805682143019, −4.707621368745895, −4.290099268520717, −3.547524869692453, −3.338780240934005, −2.801646291683011, −1.982092798655302, −1.279908563039541, −0.5935948892369118, 0, 0.5935948892369118, 1.279908563039541, 1.982092798655302, 2.801646291683011, 3.338780240934005, 3.547524869692453, 4.290099268520717, 4.707621368745895, 5.397805682143019, 5.851691722415574, 6.393015274987322, 6.569826963802577, 7.191147751486330, 7.672160401321169, 8.170254885398333, 8.693216897304856, 9.300678700895418, 9.622071699854688, 10.04957923114132, 10.64732403449409, 10.80596174365167, 11.66095970413526, 11.79227076956841, 12.30186483168343, 12.79977950401346

Graph of the $Z$-function along the critical line