Properties

Label 2-33462-1.1-c1-0-1
Degree $2$
Conductor $33462$
Sign $1$
Analytic cond. $267.195$
Root an. cond. $16.3461$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s + 11-s + 16-s − 22-s − 5·25-s − 6·29-s − 32-s − 6·37-s − 6·41-s − 8·43-s + 44-s + 6·47-s − 7·49-s + 5·50-s − 6·53-s + 6·58-s − 8·61-s + 64-s − 6·67-s − 6·71-s + 6·73-s + 6·74-s + 10·79-s + 6·82-s − 12·83-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s + 0.301·11-s + 1/4·16-s − 0.213·22-s − 25-s − 1.11·29-s − 0.176·32-s − 0.986·37-s − 0.937·41-s − 1.21·43-s + 0.150·44-s + 0.875·47-s − 49-s + 0.707·50-s − 0.824·53-s + 0.787·58-s − 1.02·61-s + 1/8·64-s − 0.733·67-s − 0.712·71-s + 0.702·73-s + 0.697·74-s + 1.12·79-s + 0.662·82-s − 1.31·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33462 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33462 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33462\)    =    \(2 \cdot 3^{2} \cdot 11 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(267.195\)
Root analytic conductor: \(16.3461\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 33462,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8344656572\)
\(L(\frac12)\) \(\approx\) \(0.8344656572\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
11 \( 1 - T \)
13 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + p T^{2} \) 1.7.a
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 6 T + p T^{2} \) 1.67.g
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.19312134803893, −14.56982114145891, −13.91356642120753, −13.50722848033325, −12.82139083887993, −12.27743566056343, −11.66325425958337, −11.36612686601078, −10.62798437765331, −10.18098321637367, −9.604294510919338, −9.101275059062642, −8.598841905713389, −7.904644562815235, −7.528654425472685, −6.796362367773326, −6.338165465095913, −5.635064018693378, −5.055811327660115, −4.229793774056984, −3.519692011369084, −2.969148254978724, −1.886757638127330, −1.598900863277372, −0.3750181720386548, 0.3750181720386548, 1.598900863277372, 1.886757638127330, 2.969148254978724, 3.519692011369084, 4.229793774056984, 5.055811327660115, 5.635064018693378, 6.338165465095913, 6.796362367773326, 7.528654425472685, 7.904644562815235, 8.598841905713389, 9.101275059062642, 9.604294510919338, 10.18098321637367, 10.62798437765331, 11.36612686601078, 11.66325425958337, 12.27743566056343, 12.82139083887993, 13.50722848033325, 13.91356642120753, 14.56982114145891, 15.19312134803893

Graph of the $Z$-function along the critical line