Properties

Label 2-32448-1.1-c1-0-79
Degree $2$
Conductor $32448$
Sign $-1$
Analytic cond. $259.098$
Root an. cond. $16.0965$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 3·5-s − 2·7-s + 9-s + 6·11-s − 3·15-s − 3·17-s + 2·19-s + 2·21-s − 6·23-s + 4·25-s − 27-s − 3·29-s + 4·31-s − 6·33-s − 6·35-s − 7·37-s + 3·41-s + 10·43-s + 3·45-s − 6·47-s − 3·49-s + 3·51-s − 3·53-s + 18·55-s − 2·57-s + 7·61-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.34·5-s − 0.755·7-s + 1/3·9-s + 1.80·11-s − 0.774·15-s − 0.727·17-s + 0.458·19-s + 0.436·21-s − 1.25·23-s + 4/5·25-s − 0.192·27-s − 0.557·29-s + 0.718·31-s − 1.04·33-s − 1.01·35-s − 1.15·37-s + 0.468·41-s + 1.52·43-s + 0.447·45-s − 0.875·47-s − 3/7·49-s + 0.420·51-s − 0.412·53-s + 2.42·55-s − 0.264·57-s + 0.896·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 32448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 32448 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(32448\)    =    \(2^{6} \cdot 3 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(259.098\)
Root analytic conductor: \(16.0965\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 32448,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 13 T + p T^{2} \) 1.73.an
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.45292781790658, −14.58193016028670, −14.11515162375159, −13.82608606012179, −13.22362076585642, −12.60417323527657, −12.22652745667087, −11.55291298975115, −11.13946384124199, −10.38727560375549, −9.735813019451379, −9.638656733924153, −9.015010747185867, −8.452733335070136, −7.485303902210284, −6.754663578143021, −6.495591009823984, −5.905118040565847, −5.576394656460957, −4.609315986511455, −4.057535675578384, −3.381113860705395, −2.464138601280337, −1.734812003991542, −1.163337600518156, 0, 1.163337600518156, 1.734812003991542, 2.464138601280337, 3.381113860705395, 4.057535675578384, 4.609315986511455, 5.576394656460957, 5.905118040565847, 6.495591009823984, 6.754663578143021, 7.485303902210284, 8.452733335070136, 9.015010747185867, 9.638656733924153, 9.735813019451379, 10.38727560375549, 11.13946384124199, 11.55291298975115, 12.22652745667087, 12.60417323527657, 13.22362076585642, 13.82608606012179, 14.11515162375159, 14.58193016028670, 15.45292781790658

Graph of the $Z$-function along the critical line