Properties

Label 2-32448-1.1-c1-0-10
Degree $2$
Conductor $32448$
Sign $1$
Analytic cond. $259.098$
Root an. cond. $16.0965$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4·5-s + 2·7-s + 9-s + 2·11-s + 4·15-s + 6·17-s − 2·19-s − 2·21-s − 8·23-s + 11·25-s − 27-s − 6·29-s − 10·31-s − 2·33-s − 8·35-s − 4·37-s − 4·43-s − 4·45-s + 2·47-s − 3·49-s − 6·51-s + 10·53-s − 8·55-s + 2·57-s − 14·59-s + 2·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.78·5-s + 0.755·7-s + 1/3·9-s + 0.603·11-s + 1.03·15-s + 1.45·17-s − 0.458·19-s − 0.436·21-s − 1.66·23-s + 11/5·25-s − 0.192·27-s − 1.11·29-s − 1.79·31-s − 0.348·33-s − 1.35·35-s − 0.657·37-s − 0.609·43-s − 0.596·45-s + 0.291·47-s − 3/7·49-s − 0.840·51-s + 1.37·53-s − 1.07·55-s + 0.264·57-s − 1.82·59-s + 0.256·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 32448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 32448 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(32448\)    =    \(2^{6} \cdot 3 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(259.098\)
Root analytic conductor: \(16.0965\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 32448,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6843418918\)
\(L(\frac12)\) \(\approx\) \(0.6843418918\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.09833083932010, −14.56462508257559, −14.24493674918238, −13.44500771938806, −12.54496563755953, −12.30248740940424, −11.87298816035802, −11.39033657764180, −10.94292177172952, −10.45105455038459, −9.712410401388508, −9.022077548307176, −8.375343154078622, −7.821836673483235, −7.546447121954032, −6.954383378142496, −6.175682399618365, −5.476597258004094, −4.970156101558116, −4.156224165697861, −3.786321446567882, −3.337280317745270, −2.038288367348968, −1.348400028367882, −0.3440503664316052, 0.3440503664316052, 1.348400028367882, 2.038288367348968, 3.337280317745270, 3.786321446567882, 4.156224165697861, 4.970156101558116, 5.476597258004094, 6.175682399618365, 6.954383378142496, 7.546447121954032, 7.821836673483235, 8.375343154078622, 9.022077548307176, 9.712410401388508, 10.45105455038459, 10.94292177172952, 11.39033657764180, 11.87298816035802, 12.30248740940424, 12.54496563755953, 13.44500771938806, 14.24493674918238, 14.56462508257559, 15.09833083932010

Graph of the $Z$-function along the critical line