Properties

Label 2-297440-1.1-c1-0-19
Degree $2$
Conductor $297440$
Sign $-1$
Analytic cond. $2375.07$
Root an. cond. $48.7346$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 5-s − 4·7-s + 9-s + 11-s − 2·15-s + 4·17-s − 4·19-s − 8·21-s − 6·23-s + 25-s − 4·27-s − 10·29-s + 4·31-s + 2·33-s + 4·35-s − 2·37-s + 10·41-s + 8·43-s − 45-s − 6·47-s + 9·49-s + 8·51-s + 2·53-s − 55-s − 8·57-s − 4·59-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.447·5-s − 1.51·7-s + 1/3·9-s + 0.301·11-s − 0.516·15-s + 0.970·17-s − 0.917·19-s − 1.74·21-s − 1.25·23-s + 1/5·25-s − 0.769·27-s − 1.85·29-s + 0.718·31-s + 0.348·33-s + 0.676·35-s − 0.328·37-s + 1.56·41-s + 1.21·43-s − 0.149·45-s − 0.875·47-s + 9/7·49-s + 1.12·51-s + 0.274·53-s − 0.134·55-s − 1.05·57-s − 0.520·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 297440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 297440 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(297440\)    =    \(2^{5} \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(2375.07\)
Root analytic conductor: \(48.7346\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 297440,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
11 \( 1 - T \)
13 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 + 4 T + p T^{2} \) 1.7.e
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 12 T + p T^{2} \) 1.73.m
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.83742043464394, −12.62784321024834, −12.15901868161798, −11.59692463001432, −11.11583626162721, −10.47193945694601, −10.06364306971724, −9.611044911635007, −9.172610191805491, −8.931140783420995, −8.267951332006894, −7.838847454647303, −7.422546693844567, −7.041501021989752, −6.196531354915884, −5.985383407733674, −5.588912227459548, −4.474007009054222, −4.193708041713317, −3.602346487752931, −3.250188508139208, −2.820225537859397, −2.158361916655665, −1.650680337206432, −0.6409544021284036, 0, 0.6409544021284036, 1.650680337206432, 2.158361916655665, 2.820225537859397, 3.250188508139208, 3.602346487752931, 4.193708041713317, 4.474007009054222, 5.588912227459548, 5.985383407733674, 6.196531354915884, 7.041501021989752, 7.422546693844567, 7.838847454647303, 8.267951332006894, 8.931140783420995, 9.172610191805491, 9.611044911635007, 10.06364306971724, 10.47193945694601, 11.11583626162721, 11.59692463001432, 12.15901868161798, 12.62784321024834, 12.83742043464394

Graph of the $Z$-function along the critical line