Properties

Label 2-290400-1.1-c1-0-55
Degree $2$
Conductor $290400$
Sign $1$
Analytic cond. $2318.85$
Root an. cond. $48.1544$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 4·7-s + 9-s − 2·13-s + 2·17-s + 4·19-s − 4·21-s + 27-s + 6·29-s − 4·31-s + 2·37-s − 2·39-s + 6·41-s + 4·43-s − 8·47-s + 9·49-s + 2·51-s + 6·53-s + 4·57-s − 12·59-s + 10·61-s − 4·63-s + 4·67-s + 10·73-s + 12·79-s + 81-s − 12·83-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.51·7-s + 1/3·9-s − 0.554·13-s + 0.485·17-s + 0.917·19-s − 0.872·21-s + 0.192·27-s + 1.11·29-s − 0.718·31-s + 0.328·37-s − 0.320·39-s + 0.937·41-s + 0.609·43-s − 1.16·47-s + 9/7·49-s + 0.280·51-s + 0.824·53-s + 0.529·57-s − 1.56·59-s + 1.28·61-s − 0.503·63-s + 0.488·67-s + 1.17·73-s + 1.35·79-s + 1/9·81-s − 1.31·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 290400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 290400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(290400\)    =    \(2^{5} \cdot 3 \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(2318.85\)
Root analytic conductor: \(48.1544\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 290400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.862146342\)
\(L(\frac12)\) \(\approx\) \(2.862146342\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
11 \( 1 \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.75559424435115, −12.35339482343133, −12.00417654607402, −11.28424093652467, −10.90937185027509, −10.13078013342342, −9.867564736647519, −9.657595788282227, −9.023533776157123, −8.719400210788668, −7.993432459290606, −7.527764762782035, −7.232071190813640, −6.520382932263042, −6.303743071168682, −5.606736192871283, −5.136510084193484, −4.515366591464207, −3.895770837841047, −3.374180752788817, −3.030488952417349, −2.503582124332987, −1.906702884599222, −0.9741999198448661, −0.5057253539329782, 0.5057253539329782, 0.9741999198448661, 1.906702884599222, 2.503582124332987, 3.030488952417349, 3.374180752788817, 3.895770837841047, 4.515366591464207, 5.136510084193484, 5.606736192871283, 6.303743071168682, 6.520382932263042, 7.232071190813640, 7.527764762782035, 7.993432459290606, 8.719400210788668, 9.023533776157123, 9.657595788282227, 9.867564736647519, 10.13078013342342, 10.90937185027509, 11.28424093652467, 12.00417654607402, 12.35339482343133, 12.75559424435115

Graph of the $Z$-function along the critical line