Properties

Label 2-286650-1.1-c1-0-116
Degree $2$
Conductor $286650$
Sign $1$
Analytic cond. $2288.91$
Root an. cond. $47.8425$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s + 6·11-s − 13-s + 16-s − 4·17-s − 2·19-s − 6·22-s + 6·23-s + 26-s + 10·29-s − 4·31-s − 32-s + 4·34-s − 6·37-s + 2·38-s + 10·41-s + 6·44-s − 6·46-s + 8·47-s − 52-s + 6·53-s − 10·58-s − 6·59-s + 6·61-s + 4·62-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s + 1.80·11-s − 0.277·13-s + 1/4·16-s − 0.970·17-s − 0.458·19-s − 1.27·22-s + 1.25·23-s + 0.196·26-s + 1.85·29-s − 0.718·31-s − 0.176·32-s + 0.685·34-s − 0.986·37-s + 0.324·38-s + 1.56·41-s + 0.904·44-s − 0.884·46-s + 1.16·47-s − 0.138·52-s + 0.824·53-s − 1.31·58-s − 0.781·59-s + 0.768·61-s + 0.508·62-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 286650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 286650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(286650\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(2288.91\)
Root analytic conductor: \(47.8425\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 286650,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.154897892\)
\(L(\frac12)\) \(\approx\) \(2.154897892\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good11 \( 1 - 6 T + p T^{2} \) 1.11.ag
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.57485482181476, −12.20731138383833, −11.73958945322853, −11.34192608014628, −10.82801334653685, −10.47305676776326, −9.961177499230726, −9.313716348483101, −8.939206845175343, −8.807100038833843, −8.287141037767541, −7.355470324780291, −7.259825505243764, −6.645489574716534, −6.305372219951952, −5.823400156553274, −5.058980695055436, −4.486140714640193, −4.097583011463665, −3.491516924835917, −2.787097319188086, −2.347452473895454, −1.591216840534956, −1.102626915994228, −0.4903421199994833, 0.4903421199994833, 1.102626915994228, 1.591216840534956, 2.347452473895454, 2.787097319188086, 3.491516924835917, 4.097583011463665, 4.486140714640193, 5.058980695055436, 5.823400156553274, 6.305372219951952, 6.645489574716534, 7.259825505243764, 7.355470324780291, 8.287141037767541, 8.807100038833843, 8.939206845175343, 9.313716348483101, 9.961177499230726, 10.47305676776326, 10.82801334653685, 11.34192608014628, 11.73958945322853, 12.20731138383833, 12.57485482181476

Graph of the $Z$-function along the critical line