Properties

Label 2-279864-1.1-c1-0-48
Degree $2$
Conductor $279864$
Sign $-1$
Analytic cond. $2234.72$
Root an. cond. $47.2728$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 4·7-s − 4·11-s + 2·17-s − 23-s − 25-s + 2·29-s + 8·35-s + 10·37-s − 6·41-s + 8·43-s − 8·47-s + 9·49-s + 6·53-s − 8·55-s − 4·59-s + 14·61-s − 8·67-s − 8·71-s + 6·73-s − 16·77-s + 12·79-s − 12·83-s + 4·85-s − 2·89-s − 10·97-s + 101-s + ⋯
L(s)  = 1  + 0.894·5-s + 1.51·7-s − 1.20·11-s + 0.485·17-s − 0.208·23-s − 1/5·25-s + 0.371·29-s + 1.35·35-s + 1.64·37-s − 0.937·41-s + 1.21·43-s − 1.16·47-s + 9/7·49-s + 0.824·53-s − 1.07·55-s − 0.520·59-s + 1.79·61-s − 0.977·67-s − 0.949·71-s + 0.702·73-s − 1.82·77-s + 1.35·79-s − 1.31·83-s + 0.433·85-s − 0.211·89-s − 1.01·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 279864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 279864 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(279864\)    =    \(2^{3} \cdot 3^{2} \cdot 13^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(2234.72\)
Root analytic conductor: \(47.2728\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 279864,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 \)
23 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.10661343692018, −12.52626143818114, −12.02244435387772, −11.56782731455667, −11.09730804614254, −10.68849865905318, −10.25750256330460, −9.767088519704401, −9.431893938121395, −8.682459851055352, −8.295658689079600, −7.792473318676646, −7.647698662462391, −6.855785061438338, −6.334030371977706, −5.651861168410147, −5.412284380309035, −5.016333371520833, −4.360576989984413, −3.978955655836383, −3.031297886941099, −2.544628326542478, −2.111020817706697, −1.470701535588566, −0.9830052316594001, 0, 0.9830052316594001, 1.470701535588566, 2.111020817706697, 2.544628326542478, 3.031297886941099, 3.978955655836383, 4.360576989984413, 5.016333371520833, 5.412284380309035, 5.651861168410147, 6.334030371977706, 6.855785061438338, 7.647698662462391, 7.792473318676646, 8.295658689079600, 8.682459851055352, 9.431893938121395, 9.767088519704401, 10.25750256330460, 10.68849865905318, 11.09730804614254, 11.56782731455667, 12.02244435387772, 12.52626143818114, 13.10661343692018

Graph of the $Z$-function along the critical line