Properties

Label 2-27456-1.1-c1-0-47
Degree $2$
Conductor $27456$
Sign $1$
Analytic cond. $219.237$
Root an. cond. $14.8066$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s + 4·7-s + 9-s + 11-s + 13-s + 2·15-s + 4·17-s + 6·19-s + 4·21-s + 6·23-s − 25-s + 27-s − 6·29-s + 6·31-s + 33-s + 8·35-s + 4·37-s + 39-s − 10·41-s + 8·43-s + 2·45-s − 12·47-s + 9·49-s + 4·51-s + 12·53-s + 2·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s + 1.51·7-s + 1/3·9-s + 0.301·11-s + 0.277·13-s + 0.516·15-s + 0.970·17-s + 1.37·19-s + 0.872·21-s + 1.25·23-s − 1/5·25-s + 0.192·27-s − 1.11·29-s + 1.07·31-s + 0.174·33-s + 1.35·35-s + 0.657·37-s + 0.160·39-s − 1.56·41-s + 1.21·43-s + 0.298·45-s − 1.75·47-s + 9/7·49-s + 0.560·51-s + 1.64·53-s + 0.269·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27456 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27456\)    =    \(2^{6} \cdot 3 \cdot 11 \cdot 13\)
Sign: $1$
Analytic conductor: \(219.237\)
Root analytic conductor: \(14.8066\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 27456,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.770297990\)
\(L(\frac12)\) \(\approx\) \(5.770297990\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 - T \)
13 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.06885983307017, −14.72089973685203, −14.12114801284517, −13.67552708456323, −13.45315033025820, −12.62416694838099, −11.89683588206878, −11.58225580852287, −10.89324636701035, −10.38460748879483, −9.589915256190793, −9.403259309411725, −8.654215519457459, −8.086287603441485, −7.573453414459158, −7.116839268058787, −6.158680769499765, −5.648249686134968, −4.976235564516577, −4.592417941670890, −3.558377332812355, −3.051954011347022, −2.150555606685879, −1.474009133747539, −1.040586630174923, 1.040586630174923, 1.474009133747539, 2.150555606685879, 3.051954011347022, 3.558377332812355, 4.592417941670890, 4.976235564516577, 5.648249686134968, 6.158680769499765, 7.116839268058787, 7.573453414459158, 8.086287603441485, 8.654215519457459, 9.403259309411725, 9.589915256190793, 10.38460748879483, 10.89324636701035, 11.58225580852287, 11.89683588206878, 12.62416694838099, 13.45315033025820, 13.67552708456323, 14.12114801284517, 14.72089973685203, 15.06885983307017

Graph of the $Z$-function along the critical line