L(s) = 1 | + 2-s + 3-s + 4-s + 5-s + 6-s − 7-s + 8-s + 9-s + 10-s + 2·11-s + 12-s − 13-s − 14-s + 15-s + 16-s + 6·17-s + 18-s − 6·19-s + 20-s − 21-s + 2·22-s + 4·23-s + 24-s + 25-s − 26-s + 27-s − 28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.603·11-s + 0.288·12-s − 0.277·13-s − 0.267·14-s + 0.258·15-s + 1/4·16-s + 1.45·17-s + 0.235·18-s − 1.37·19-s + 0.223·20-s − 0.218·21-s + 0.426·22-s + 0.834·23-s + 0.204·24-s + 1/5·25-s − 0.196·26-s + 0.192·27-s − 0.188·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2730 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2730 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.042379720\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.042379720\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
---|
bad | 2 | \( 1 - T \) | |
| 3 | \( 1 - T \) | |
| 5 | \( 1 - T \) | |
| 7 | \( 1 + T \) | |
| 13 | \( 1 + T \) | |
good | 11 | \( 1 - 2 T + p T^{2} \) | 1.11.ac |
| 17 | \( 1 - 6 T + p T^{2} \) | 1.17.ag |
| 19 | \( 1 + 6 T + p T^{2} \) | 1.19.g |
| 23 | \( 1 - 4 T + p T^{2} \) | 1.23.ae |
| 29 | \( 1 + p T^{2} \) | 1.29.a |
| 31 | \( 1 - 4 T + p T^{2} \) | 1.31.ae |
| 37 | \( 1 - 6 T + p T^{2} \) | 1.37.ag |
| 41 | \( 1 - 10 T + p T^{2} \) | 1.41.ak |
| 43 | \( 1 + 8 T + p T^{2} \) | 1.43.i |
| 47 | \( 1 + 8 T + p T^{2} \) | 1.47.i |
| 53 | \( 1 - 6 T + p T^{2} \) | 1.53.ag |
| 59 | \( 1 - 8 T + p T^{2} \) | 1.59.ai |
| 61 | \( 1 + 8 T + p T^{2} \) | 1.61.i |
| 67 | \( 1 - 2 T + p T^{2} \) | 1.67.ac |
| 71 | \( 1 - 12 T + p T^{2} \) | 1.71.am |
| 73 | \( 1 + 2 T + p T^{2} \) | 1.73.c |
| 79 | \( 1 + 8 T + p T^{2} \) | 1.79.i |
| 83 | \( 1 + 18 T + p T^{2} \) | 1.83.s |
| 89 | \( 1 - 2 T + p T^{2} \) | 1.89.ac |
| 97 | \( 1 - 2 T + p T^{2} \) | 1.97.ac |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.791614035928595382132393002694, −8.059043059658007885693663057074, −7.17681165250965930736218059718, −6.46490743711166497312801686938, −5.79029298434121285536633677357, −4.82401323259441072260080492642, −4.01010180732857746376906949024, −3.14360482796674676572630814647, −2.36687639990783077469405755648, −1.19964080933045434670158635065,
1.19964080933045434670158635065, 2.36687639990783077469405755648, 3.14360482796674676572630814647, 4.01010180732857746376906949024, 4.82401323259441072260080492642, 5.79029298434121285536633677357, 6.46490743711166497312801686938, 7.17681165250965930736218059718, 8.059043059658007885693663057074, 8.791614035928595382132393002694