Properties

Label 2-2730-1.1-c1-0-28
Degree $2$
Conductor $2730$
Sign $1$
Analytic cond. $21.7991$
Root an. cond. $4.66895$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 5-s + 6-s − 7-s + 8-s + 9-s + 10-s + 2·11-s + 12-s − 13-s − 14-s + 15-s + 16-s + 6·17-s + 18-s − 6·19-s + 20-s − 21-s + 2·22-s + 4·23-s + 24-s + 25-s − 26-s + 27-s − 28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.603·11-s + 0.288·12-s − 0.277·13-s − 0.267·14-s + 0.258·15-s + 1/4·16-s + 1.45·17-s + 0.235·18-s − 1.37·19-s + 0.223·20-s − 0.218·21-s + 0.426·22-s + 0.834·23-s + 0.204·24-s + 1/5·25-s − 0.196·26-s + 0.192·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2730 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2730 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2730\)    =    \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(21.7991\)
Root analytic conductor: \(4.66895\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2730,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.042379720\)
\(L(\frac12)\) \(\approx\) \(4.042379720\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 + T \)
13 \( 1 + T \)
good11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 18 T + p T^{2} \) 1.83.s
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.791614035928595382132393002694, −8.059043059658007885693663057074, −7.17681165250965930736218059718, −6.46490743711166497312801686938, −5.79029298434121285536633677357, −4.82401323259441072260080492642, −4.01010180732857746376906949024, −3.14360482796674676572630814647, −2.36687639990783077469405755648, −1.19964080933045434670158635065, 1.19964080933045434670158635065, 2.36687639990783077469405755648, 3.14360482796674676572630814647, 4.01010180732857746376906949024, 4.82401323259441072260080492642, 5.79029298434121285536633677357, 6.46490743711166497312801686938, 7.17681165250965930736218059718, 8.059043059658007885693663057074, 8.791614035928595382132393002694

Graph of the $Z$-function along the critical line