Properties

Label 2-262080-1.1-c1-0-183
Degree $2$
Conductor $262080$
Sign $-1$
Analytic cond. $2092.71$
Root an. cond. $45.7462$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 7-s − 4·11-s + 13-s − 6·17-s + 8·19-s − 4·23-s + 25-s − 2·29-s + 4·31-s − 35-s − 10·37-s + 2·41-s + 8·43-s + 8·47-s + 49-s + 6·53-s + 4·55-s − 8·59-s + 10·61-s − 65-s − 12·67-s − 8·71-s + 6·73-s − 4·77-s − 8·79-s + 4·83-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.377·7-s − 1.20·11-s + 0.277·13-s − 1.45·17-s + 1.83·19-s − 0.834·23-s + 1/5·25-s − 0.371·29-s + 0.718·31-s − 0.169·35-s − 1.64·37-s + 0.312·41-s + 1.21·43-s + 1.16·47-s + 1/7·49-s + 0.824·53-s + 0.539·55-s − 1.04·59-s + 1.28·61-s − 0.124·65-s − 1.46·67-s − 0.949·71-s + 0.702·73-s − 0.455·77-s − 0.900·79-s + 0.439·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 262080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 262080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(262080\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(2092.71\)
Root analytic conductor: \(45.7462\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 262080,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 - T \)
13 \( 1 - T \)
good11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.17081216805704, −12.43534940404939, −12.15818685054833, −11.59243817682106, −11.27578555531452, −10.70134114012688, −10.36372214590793, −9.927152348871168, −9.147565509752840, −8.921191256210960, −8.340205133285325, −7.856601706530409, −7.362267396173986, −7.178573684619992, −6.384809780142566, −5.847465555813156, −5.294623242534797, −5.017169024211991, −4.188067827910523, −4.024193165303190, −3.150242126233133, −2.721805402820683, −2.152692580738213, −1.462954192881377, −0.6985594355912974, 0, 0.6985594355912974, 1.462954192881377, 2.152692580738213, 2.721805402820683, 3.150242126233133, 4.024193165303190, 4.188067827910523, 5.017169024211991, 5.294623242534797, 5.847465555813156, 6.384809780142566, 7.178573684619992, 7.362267396173986, 7.856601706530409, 8.340205133285325, 8.921191256210960, 9.147565509752840, 9.927152348871168, 10.36372214590793, 10.70134114012688, 11.27578555531452, 11.59243817682106, 12.15818685054833, 12.43534940404939, 13.17081216805704

Graph of the $Z$-function along the critical line