Properties

Label 2-244608-1.1-c1-0-131
Degree $2$
Conductor $244608$
Sign $1$
Analytic cond. $1953.20$
Root an. cond. $44.1950$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 9-s + 2·11-s − 13-s + 2·15-s − 4·17-s − 4·19-s − 4·23-s − 25-s − 27-s − 6·29-s − 2·33-s − 2·37-s + 39-s − 8·41-s + 6·43-s − 2·45-s + 4·51-s − 10·53-s − 4·55-s + 4·57-s + 12·59-s − 2·61-s + 2·65-s + 2·67-s + 4·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 1/3·9-s + 0.603·11-s − 0.277·13-s + 0.516·15-s − 0.970·17-s − 0.917·19-s − 0.834·23-s − 1/5·25-s − 0.192·27-s − 1.11·29-s − 0.348·33-s − 0.328·37-s + 0.160·39-s − 1.24·41-s + 0.914·43-s − 0.298·45-s + 0.560·51-s − 1.37·53-s − 0.539·55-s + 0.529·57-s + 1.56·59-s − 0.256·61-s + 0.248·65-s + 0.244·67-s + 0.481·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 244608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 244608 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(244608\)    =    \(2^{7} \cdot 3 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1953.20\)
Root analytic conductor: \(44.1950\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 244608,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.21839033324437, −12.69753601484611, −12.43247069749627, −11.86299179512137, −11.45912467990029, −11.15764894723800, −10.72078214002931, −10.07466543146920, −9.731746251102580, −9.043392110281915, −8.728494826605627, −8.044392025405605, −7.784221426126345, −7.078453285213711, −6.727228171443445, −6.286288830122405, −5.690669384124213, −5.176534157091535, −4.505642513031544, −4.130944647754573, −3.761603982471756, −3.134369388603047, −2.172963506124051, −1.911242811860492, −1.022126836311001, 0, 0, 1.022126836311001, 1.911242811860492, 2.172963506124051, 3.134369388603047, 3.761603982471756, 4.130944647754573, 4.505642513031544, 5.176534157091535, 5.690669384124213, 6.286288830122405, 6.727228171443445, 7.078453285213711, 7.784221426126345, 8.044392025405605, 8.728494826605627, 9.043392110281915, 9.731746251102580, 10.07466543146920, 10.72078214002931, 11.15764894723800, 11.45912467990029, 11.86299179512137, 12.43247069749627, 12.69753601484611, 13.21839033324437

Graph of the $Z$-function along the critical line