Properties

Label 2-235200-1.1-c1-0-390
Degree $2$
Conductor $235200$
Sign $-1$
Analytic cond. $1878.08$
Root an. cond. $43.3368$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s − 4·11-s − 2·13-s − 2·17-s + 8·19-s − 4·23-s − 27-s + 6·29-s + 4·33-s + 2·37-s + 2·39-s + 6·41-s + 4·43-s − 12·47-s + 2·51-s − 6·53-s − 8·57-s + 12·59-s + 14·61-s − 12·67-s + 4·69-s + 2·73-s − 8·79-s + 81-s + 4·83-s − 6·87-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s − 1.20·11-s − 0.554·13-s − 0.485·17-s + 1.83·19-s − 0.834·23-s − 0.192·27-s + 1.11·29-s + 0.696·33-s + 0.328·37-s + 0.320·39-s + 0.937·41-s + 0.609·43-s − 1.75·47-s + 0.280·51-s − 0.824·53-s − 1.05·57-s + 1.56·59-s + 1.79·61-s − 1.46·67-s + 0.481·69-s + 0.234·73-s − 0.900·79-s + 1/9·81-s + 0.439·83-s − 0.643·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 235200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 235200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(235200\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(1878.08\)
Root analytic conductor: \(43.3368\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 235200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
good11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.13523522522944, −12.65595181529905, −12.13495146171537, −11.80171371645382, −11.25823502596950, −10.93835207958864, −10.24774386279392, −9.951925151941796, −9.594160972502410, −9.024573496160313, −8.241717260155738, −7.939780658441606, −7.546598914828864, −6.843163777933498, −6.621682251008898, −5.757396924040769, −5.459903825918103, −5.062247149089903, −4.438668844115439, −4.013775228239300, −3.109888332390381, −2.780854565412184, −2.160437036581740, −1.379425942360483, −0.6988975233762342, 0, 0.6988975233762342, 1.379425942360483, 2.160437036581740, 2.780854565412184, 3.109888332390381, 4.013775228239300, 4.438668844115439, 5.062247149089903, 5.459903825918103, 5.757396924040769, 6.621682251008898, 6.843163777933498, 7.546598914828864, 7.939780658441606, 8.241717260155738, 9.024573496160313, 9.594160972502410, 9.951925151941796, 10.24774386279392, 10.93835207958864, 11.25823502596950, 11.80171371645382, 12.13495146171537, 12.65595181529905, 13.13523522522944

Graph of the $Z$-function along the critical line