Properties

Label 2-235200-1.1-c1-0-302
Degree $2$
Conductor $235200$
Sign $1$
Analytic cond. $1878.08$
Root an. cond. $43.3368$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s + 6·11-s + 4·13-s + 6·17-s − 2·19-s + 27-s − 6·29-s − 10·31-s + 6·33-s + 2·37-s + 4·39-s + 6·41-s + 4·43-s + 6·51-s − 12·53-s − 2·57-s + 14·61-s + 4·67-s − 6·71-s − 4·73-s + 16·79-s + 81-s − 12·83-s − 6·87-s − 6·89-s − 10·93-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s + 1.80·11-s + 1.10·13-s + 1.45·17-s − 0.458·19-s + 0.192·27-s − 1.11·29-s − 1.79·31-s + 1.04·33-s + 0.328·37-s + 0.640·39-s + 0.937·41-s + 0.609·43-s + 0.840·51-s − 1.64·53-s − 0.264·57-s + 1.79·61-s + 0.488·67-s − 0.712·71-s − 0.468·73-s + 1.80·79-s + 1/9·81-s − 1.31·83-s − 0.643·87-s − 0.635·89-s − 1.03·93-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 235200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 235200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(235200\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1878.08\)
Root analytic conductor: \(43.3368\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 235200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.957199501\)
\(L(\frac12)\) \(\approx\) \(4.957199501\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
good11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.95937482530613, −12.42102453978920, −12.13311228724065, −11.36633512480722, −11.10495204014170, −10.76277470615956, −9.876551104071068, −9.536153482605101, −9.288806585215673, −8.578965001345556, −8.433709036971953, −7.642753469176245, −7.293262152545195, −6.806603797571619, −6.036282759179750, −5.940671223553891, −5.262878213774854, −4.457079444404971, −3.922943611908806, −3.615530579456898, −3.243387986253208, −2.347555773196730, −1.659367600102264, −1.320590092455971, −0.6149878599005496, 0.6149878599005496, 1.320590092455971, 1.659367600102264, 2.347555773196730, 3.243387986253208, 3.615530579456898, 3.922943611908806, 4.457079444404971, 5.262878213774854, 5.940671223553891, 6.036282759179750, 6.806603797571619, 7.293262152545195, 7.642753469176245, 8.433709036971953, 8.578965001345556, 9.288806585215673, 9.536153482605101, 9.876551104071068, 10.76277470615956, 11.10495204014170, 11.36633512480722, 12.13311228724065, 12.42102453978920, 12.95937482530613

Graph of the $Z$-function along the critical line