Properties

Label 2-234090-1.1-c1-0-22
Degree $2$
Conductor $234090$
Sign $1$
Analytic cond. $1869.21$
Root an. cond. $43.2344$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s + 7-s − 8-s + 10-s + 6·11-s + 2·13-s − 14-s + 16-s − 4·19-s − 20-s − 6·22-s + 9·23-s + 25-s − 2·26-s + 28-s + 3·29-s + 4·31-s − 32-s − 35-s − 8·37-s + 4·38-s + 40-s − 3·41-s + 8·43-s + 6·44-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.377·7-s − 0.353·8-s + 0.316·10-s + 1.80·11-s + 0.554·13-s − 0.267·14-s + 1/4·16-s − 0.917·19-s − 0.223·20-s − 1.27·22-s + 1.87·23-s + 1/5·25-s − 0.392·26-s + 0.188·28-s + 0.557·29-s + 0.718·31-s − 0.176·32-s − 0.169·35-s − 1.31·37-s + 0.648·38-s + 0.158·40-s − 0.468·41-s + 1.21·43-s + 0.904·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 234090 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234090 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(234090\)    =    \(2 \cdot 3^{4} \cdot 5 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1869.21\)
Root analytic conductor: \(43.2344\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 234090,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.382993502\)
\(L(\frac12)\) \(\approx\) \(2.382993502\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 + T \)
17 \( 1 \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 13 T + p T^{2} \) 1.61.an
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.75425904524127, −12.34416106339683, −11.85300013025791, −11.49425211093107, −11.03751943183979, −10.62809668572193, −10.24302878653041, −9.338957817438657, −9.208493633017596, −8.735150405151255, −8.299275061199362, −7.880163348583665, −7.046022077240940, −6.884668692835742, −6.403861671543169, −5.902800697054872, −5.153036799668064, −4.537223499771256, −4.182562506861390, −3.430921416691547, −3.120353633610547, −2.269407891170373, −1.563495699955090, −1.145436340579170, −0.5383525008582212, 0.5383525008582212, 1.145436340579170, 1.563495699955090, 2.269407891170373, 3.120353633610547, 3.430921416691547, 4.182562506861390, 4.537223499771256, 5.153036799668064, 5.902800697054872, 6.403861671543169, 6.884668692835742, 7.046022077240940, 7.880163348583665, 8.299275061199362, 8.735150405151255, 9.208493633017596, 9.338957817438657, 10.24302878653041, 10.62809668572193, 11.03751943183979, 11.49425211093107, 11.85300013025791, 12.34416106339683, 12.75425904524127

Graph of the $Z$-function along the critical line