Properties

Label 2-227136-1.1-c1-0-54
Degree $2$
Conductor $227136$
Sign $1$
Analytic cond. $1813.69$
Root an. cond. $42.5874$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s − 7-s + 9-s − 3·11-s + 15-s − 7·17-s + 3·19-s − 21-s + 23-s − 4·25-s + 27-s + 29-s + 8·31-s − 3·33-s − 35-s − 37-s + 4·41-s + 5·43-s + 45-s + 49-s − 7·51-s + 6·53-s − 3·55-s + 3·57-s − 10·59-s + 13·61-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 0.377·7-s + 1/3·9-s − 0.904·11-s + 0.258·15-s − 1.69·17-s + 0.688·19-s − 0.218·21-s + 0.208·23-s − 4/5·25-s + 0.192·27-s + 0.185·29-s + 1.43·31-s − 0.522·33-s − 0.169·35-s − 0.164·37-s + 0.624·41-s + 0.762·43-s + 0.149·45-s + 1/7·49-s − 0.980·51-s + 0.824·53-s − 0.404·55-s + 0.397·57-s − 1.30·59-s + 1.66·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 227136 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 227136 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(227136\)    =    \(2^{6} \cdot 3 \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1813.69\)
Root analytic conductor: \(42.5874\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 227136,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.516274007\)
\(L(\frac12)\) \(\approx\) \(2.516274007\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 + T \)
13 \( 1 \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 - 13 T + p T^{2} \) 1.61.an
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 13 T + p T^{2} \) 1.73.an
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.97967529722692, −12.70352125570585, −11.96833649399944, −11.63984900688741, −10.94102444877199, −10.58331147726277, −10.12947350825251, −9.543531401736316, −9.322174063004069, −8.673993562243344, −8.343622646239835, −7.632268954684260, −7.434684804862659, −6.561084353293001, −6.444133689334801, −5.705489767452454, −5.204833382753048, −4.622311457292040, −4.149426096797156, −3.548693454302911, −2.819289288082150, −2.473761161983984, −2.036969147243423, −1.171658454823654, −0.4294301661908647, 0.4294301661908647, 1.171658454823654, 2.036969147243423, 2.473761161983984, 2.819289288082150, 3.548693454302911, 4.149426096797156, 4.622311457292040, 5.204833382753048, 5.705489767452454, 6.444133689334801, 6.561084353293001, 7.434684804862659, 7.632268954684260, 8.343622646239835, 8.673993562243344, 9.322174063004069, 9.543531401736316, 10.12947350825251, 10.58331147726277, 10.94102444877199, 11.63984900688741, 11.96833649399944, 12.70352125570585, 12.97967529722692

Graph of the $Z$-function along the critical line