Properties

Label 2-21840-1.1-c1-0-0
Degree $2$
Conductor $21840$
Sign $1$
Analytic cond. $174.393$
Root an. cond. $13.2058$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 7-s + 9-s − 13-s + 15-s + 2·17-s − 4·19-s + 21-s − 8·23-s + 25-s − 27-s − 6·29-s − 4·31-s + 35-s − 6·37-s + 39-s − 10·41-s − 45-s − 12·47-s + 49-s − 2·51-s − 2·53-s + 4·57-s − 4·59-s + 10·61-s − 63-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.377·7-s + 1/3·9-s − 0.277·13-s + 0.258·15-s + 0.485·17-s − 0.917·19-s + 0.218·21-s − 1.66·23-s + 1/5·25-s − 0.192·27-s − 1.11·29-s − 0.718·31-s + 0.169·35-s − 0.986·37-s + 0.160·39-s − 1.56·41-s − 0.149·45-s − 1.75·47-s + 1/7·49-s − 0.280·51-s − 0.274·53-s + 0.529·57-s − 0.520·59-s + 1.28·61-s − 0.125·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(21840\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(174.393\)
Root analytic conductor: \(13.2058\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 21840,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2683960384\)
\(L(\frac12)\) \(\approx\) \(0.2683960384\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 + T \)
13 \( 1 + T \)
good11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.64640328098525, −14.97144951345180, −14.62694240652922, −13.89673490180905, −13.28310016229719, −12.70878435468508, −12.29710133540323, −11.67841306361235, −11.32661951052896, −10.47860810270428, −10.16710384414741, −9.571339908518117, −8.828014736922195, −8.222055151351723, −7.632850687007255, −7.031202297842573, −6.395483588852667, −5.870654560275758, −5.163718386740866, −4.562897363476855, −3.711717150108974, −3.390189671096053, −2.175932479319451, −1.584597541921457, −0.2111367719098465, 0.2111367719098465, 1.584597541921457, 2.175932479319451, 3.390189671096053, 3.711717150108974, 4.562897363476855, 5.163718386740866, 5.870654560275758, 6.395483588852667, 7.031202297842573, 7.632850687007255, 8.222055151351723, 8.828014736922195, 9.571339908518117, 10.16710384414741, 10.47860810270428, 11.32661951052896, 11.67841306361235, 12.29710133540323, 12.70878435468508, 13.28310016229719, 13.89673490180905, 14.62694240652922, 14.97144951345180, 15.64640328098525

Graph of the $Z$-function along the critical line