Properties

Label 2-217854-1.1-c1-0-104
Degree $2$
Conductor $217854$
Sign $-1$
Analytic cond. $1739.57$
Root an. cond. $41.7081$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 2·5-s + 8-s + 2·10-s − 4·11-s + 13-s + 16-s + 2·17-s − 19-s + 2·20-s − 4·22-s + 8·23-s − 25-s + 26-s − 2·29-s + 32-s + 2·34-s + 10·37-s − 38-s + 2·40-s − 2·41-s + 12·43-s − 4·44-s + 8·46-s + 4·47-s − 50-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.894·5-s + 0.353·8-s + 0.632·10-s − 1.20·11-s + 0.277·13-s + 1/4·16-s + 0.485·17-s − 0.229·19-s + 0.447·20-s − 0.852·22-s + 1.66·23-s − 1/5·25-s + 0.196·26-s − 0.371·29-s + 0.176·32-s + 0.342·34-s + 1.64·37-s − 0.162·38-s + 0.316·40-s − 0.312·41-s + 1.82·43-s − 0.603·44-s + 1.17·46-s + 0.583·47-s − 0.141·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 217854 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 217854 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(217854\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 13 \cdot 19\)
Sign: $-1$
Analytic conductor: \(1739.57\)
Root analytic conductor: \(41.7081\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 217854,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
19 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.22146240818266, −12.81287028099180, −12.54435300200169, −11.86781929396338, −11.31330155730303, −10.88062647683002, −10.48191389432741, −10.09928805963842, −9.461877219225148, −9.035837582319506, −8.586705924530868, −7.744754826872026, −7.490342685265160, −7.096401781270909, −6.184096142614225, −5.865684968562340, −5.691395236687215, −4.881213354001648, −4.581542731969378, −3.962196248731661, −3.103121231463941, −2.803120199672129, −2.341064803967873, −1.529934167242605, −1.039744888893497, 0, 1.039744888893497, 1.529934167242605, 2.341064803967873, 2.803120199672129, 3.103121231463941, 3.962196248731661, 4.581542731969378, 4.881213354001648, 5.691395236687215, 5.865684968562340, 6.184096142614225, 7.096401781270909, 7.490342685265160, 7.744754826872026, 8.586705924530868, 9.035837582319506, 9.461877219225148, 10.09928805963842, 10.48191389432741, 10.88062647683002, 11.31330155730303, 11.86781929396338, 12.54435300200169, 12.81287028099180, 13.22146240818266

Graph of the $Z$-function along the critical line