Properties

Label 2-214896-1.1-c1-0-40
Degree $2$
Conductor $214896$
Sign $-1$
Analytic cond. $1715.95$
Root an. cond. $41.4240$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·5-s − 4·7-s + 9-s − 4·13-s − 2·15-s − 2·17-s + 8·19-s + 4·21-s − 4·23-s − 25-s − 27-s + 6·29-s − 8·35-s + 37-s + 4·39-s − 6·41-s + 8·43-s + 2·45-s + 6·47-s + 9·49-s + 2·51-s − 8·57-s − 6·59-s − 8·61-s − 4·63-s − 8·65-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.894·5-s − 1.51·7-s + 1/3·9-s − 1.10·13-s − 0.516·15-s − 0.485·17-s + 1.83·19-s + 0.872·21-s − 0.834·23-s − 1/5·25-s − 0.192·27-s + 1.11·29-s − 1.35·35-s + 0.164·37-s + 0.640·39-s − 0.937·41-s + 1.21·43-s + 0.298·45-s + 0.875·47-s + 9/7·49-s + 0.280·51-s − 1.05·57-s − 0.781·59-s − 1.02·61-s − 0.503·63-s − 0.992·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 214896 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 214896 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(214896\)    =    \(2^{4} \cdot 3 \cdot 11^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(1715.95\)
Root analytic conductor: \(41.4240\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 214896,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 \)
37 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.15091519071990, −12.75327831571126, −12.27446212797813, −11.92609430680855, −11.52244702263745, −10.74892738567468, −10.24755096856313, −9.926110356160691, −9.636297454279679, −9.202919815854732, −8.715177639434757, −7.799350369698858, −7.437532998856192, −6.944624848249982, −6.415440068279501, −5.981553310532819, −5.676933783901839, −4.988924639066430, −4.613052113901509, −3.795350819793941, −3.302084810090244, −2.632338839337187, −2.284762415408751, −1.417449837737102, −0.6953378202124864, 0, 0.6953378202124864, 1.417449837737102, 2.284762415408751, 2.632338839337187, 3.302084810090244, 3.795350819793941, 4.613052113901509, 4.988924639066430, 5.676933783901839, 5.981553310532819, 6.415440068279501, 6.944624848249982, 7.437532998856192, 7.799350369698858, 8.715177639434757, 9.202919815854732, 9.636297454279679, 9.926110356160691, 10.24755096856313, 10.74892738567468, 11.52244702263745, 11.92609430680855, 12.27446212797813, 12.75327831571126, 13.15091519071990

Graph of the $Z$-function along the critical line