Properties

Label 2-212160-1.1-c1-0-200
Degree $2$
Conductor $212160$
Sign $1$
Analytic cond. $1694.10$
Root an. cond. $41.1595$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s − 2·7-s + 9-s + 2·11-s + 13-s − 15-s − 17-s − 2·19-s + 2·21-s − 4·23-s + 25-s − 27-s − 2·29-s − 10·31-s − 2·33-s − 2·35-s − 6·37-s − 39-s + 2·41-s − 8·43-s + 45-s − 2·47-s − 3·49-s + 51-s − 6·53-s + 2·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 0.755·7-s + 1/3·9-s + 0.603·11-s + 0.277·13-s − 0.258·15-s − 0.242·17-s − 0.458·19-s + 0.436·21-s − 0.834·23-s + 1/5·25-s − 0.192·27-s − 0.371·29-s − 1.79·31-s − 0.348·33-s − 0.338·35-s − 0.986·37-s − 0.160·39-s + 0.312·41-s − 1.21·43-s + 0.149·45-s − 0.291·47-s − 3/7·49-s + 0.140·51-s − 0.824·53-s + 0.269·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 212160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 212160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(212160\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 17\)
Sign: $1$
Analytic conductor: \(1694.10\)
Root analytic conductor: \(41.1595\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 212160,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
13 \( 1 - T \)
17 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.42226888004718, −12.92954068771167, −12.52000355766511, −12.20441030235787, −11.55118873694493, −11.13005424678147, −10.70049597482144, −10.21445533093093, −9.716352554271250, −9.306001292022250, −8.905207159988709, −8.331788083064727, −7.686180733545145, −7.180024319627207, −6.543958752966544, −6.383441636341088, −5.815772198524670, −5.332708410739458, −4.757941556298426, −4.141936089492434, −3.565566284939090, −3.220412643164099, −2.295272257919415, −1.729143615699775, −1.278179445404534, 0, 0, 1.278179445404534, 1.729143615699775, 2.295272257919415, 3.220412643164099, 3.565566284939090, 4.141936089492434, 4.757941556298426, 5.332708410739458, 5.815772198524670, 6.383441636341088, 6.543958752966544, 7.180024319627207, 7.686180733545145, 8.331788083064727, 8.905207159988709, 9.306001292022250, 9.716352554271250, 10.21445533093093, 10.70049597482144, 11.13005424678147, 11.55118873694493, 12.20441030235787, 12.52000355766511, 12.92954068771167, 13.42226888004718

Graph of the $Z$-function along the critical line