Properties

Label 2-21021-1.1-c1-0-1
Degree $2$
Conductor $21021$
Sign $1$
Analytic cond. $167.853$
Root an. cond. $12.9558$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s − 4-s + 2·5-s + 6-s + 3·8-s + 9-s − 2·10-s − 11-s + 12-s − 13-s − 2·15-s − 16-s + 6·17-s − 18-s + 4·19-s − 2·20-s + 22-s − 8·23-s − 3·24-s − 25-s + 26-s − 27-s − 10·29-s + 2·30-s − 5·32-s + 33-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s − 1/2·4-s + 0.894·5-s + 0.408·6-s + 1.06·8-s + 1/3·9-s − 0.632·10-s − 0.301·11-s + 0.288·12-s − 0.277·13-s − 0.516·15-s − 1/4·16-s + 1.45·17-s − 0.235·18-s + 0.917·19-s − 0.447·20-s + 0.213·22-s − 1.66·23-s − 0.612·24-s − 1/5·25-s + 0.196·26-s − 0.192·27-s − 1.85·29-s + 0.365·30-s − 0.883·32-s + 0.174·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21021 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21021 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(21021\)    =    \(3 \cdot 7^{2} \cdot 11 \cdot 13\)
Sign: $1$
Analytic conductor: \(167.853\)
Root analytic conductor: \(12.9558\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 21021,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7929866532\)
\(L(\frac12)\) \(\approx\) \(0.7929866532\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 + T \)
7 \( 1 \)
11 \( 1 + T \)
13 \( 1 + T \)
good2 \( 1 + T + p T^{2} \) 1.2.b
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.88422811465214, −14.98361546285573, −14.43225125325289, −13.91028905786734, −13.45111311850996, −12.92519940999038, −12.30182402001567, −11.70906166770175, −11.12589267211235, −10.32769722453520, −9.944792000171638, −9.647449352094174, −9.150570534164287, −8.202206491835556, −7.715065259952207, −7.374125699116262, −6.329256602376267, −5.731652375824684, −5.366773491042070, −4.683585130464562, −3.854180423306234, −3.149147727525220, −1.910045576714515, −1.519793025995635, −0.4367548651366402, 0.4367548651366402, 1.519793025995635, 1.910045576714515, 3.149147727525220, 3.854180423306234, 4.683585130464562, 5.366773491042070, 5.731652375824684, 6.329256602376267, 7.374125699116262, 7.715065259952207, 8.202206491835556, 9.150570534164287, 9.647449352094174, 9.944792000171638, 10.32769722453520, 11.12589267211235, 11.70906166770175, 12.30182402001567, 12.92519940999038, 13.45111311850996, 13.91028905786734, 14.43225125325289, 14.98361546285573, 15.88422811465214

Graph of the $Z$-function along the critical line