Properties

Label 2-206310-1.1-c1-0-1
Degree $2$
Conductor $206310$
Sign $1$
Analytic cond. $1647.39$
Root an. cond. $40.5880$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s − 4·7-s − 8-s + 9-s − 10-s + 12-s − 13-s + 4·14-s + 15-s + 16-s + 2·17-s − 18-s − 4·19-s + 20-s − 4·21-s − 24-s + 25-s + 26-s + 27-s − 4·28-s + 2·29-s − 30-s − 8·31-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s − 1.51·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.288·12-s − 0.277·13-s + 1.06·14-s + 0.258·15-s + 1/4·16-s + 0.485·17-s − 0.235·18-s − 0.917·19-s + 0.223·20-s − 0.872·21-s − 0.204·24-s + 1/5·25-s + 0.196·26-s + 0.192·27-s − 0.755·28-s + 0.371·29-s − 0.182·30-s − 1.43·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 206310 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 206310 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(206310\)    =    \(2 \cdot 3 \cdot 5 \cdot 13 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(1647.39\)
Root analytic conductor: \(40.5880\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 206310,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4643396864\)
\(L(\frac12)\) \(\approx\) \(0.4643396864\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 - T \)
13 \( 1 + T \)
23 \( 1 \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.01655466582118, −12.69105472191918, −12.15390517824766, −11.63877717961018, −11.04912809475492, −10.32290670074036, −10.13021008816899, −9.861562515024787, −9.110619896592144, −8.967879880856233, −8.458699459756667, −7.769879107990478, −7.393519826607020, −6.673198283232947, −6.529310758577092, −5.996154864232048, −5.280781977555029, −4.801384941066944, −3.895480837169112, −3.391252052038744, −3.105963204869915, −2.325282988228519, −1.902736800413604, −1.196316889221811, −0.2054412139957799, 0.2054412139957799, 1.196316889221811, 1.902736800413604, 2.325282988228519, 3.105963204869915, 3.391252052038744, 3.895480837169112, 4.801384941066944, 5.280781977555029, 5.996154864232048, 6.529310758577092, 6.673198283232947, 7.393519826607020, 7.769879107990478, 8.458699459756667, 8.967879880856233, 9.110619896592144, 9.861562515024787, 10.13021008816899, 10.32290670074036, 11.04912809475492, 11.63877717961018, 12.15390517824766, 12.69105472191918, 13.01655466582118

Graph of the $Z$-function along the critical line