Properties

Label 206310.ba
Number of curves $4$
Conductor $206310$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ba1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 206310.ba have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(13\)\(1 + T\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 206310.ba do not have complex multiplication.

Modular form 206310.2.a.ba

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - 4 q^{7} - q^{8} + q^{9} - q^{10} + q^{12} - q^{13} + 4 q^{14} + q^{15} + q^{16} + 2 q^{17} - q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 206310.ba

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
206310.ba1 206310bo4 \([1, 0, 1, -45773588, -119202246094]\) \(71647584155243142409/10140000\) \(1501083914460000\) \([2]\) \(14417920\) \(2.7650\)  
206310.ba2 206310bo3 \([1, 0, 1, -3284308, -1275297742]\) \(26465989780414729/10571870144160\) \(1565016195183283758240\) \([2]\) \(14417920\) \(2.7650\)  
206310.ba3 206310bo2 \([1, 0, 1, -2861108, -1862360782]\) \(17496824387403529/6580454400\) \(974143417127961600\) \([2, 2]\) \(7208960\) \(2.4184\)  
206310.ba4 206310bo1 \([1, 0, 1, -152628, -37928654]\) \(-2656166199049/2658140160\) \(-393500141672202240\) \([2]\) \(3604480\) \(2.0719\) \(\Gamma_0(N)\)-optimal