Properties

Label 2-202800-1.1-c1-0-212
Degree $2$
Conductor $202800$
Sign $-1$
Analytic cond. $1619.36$
Root an. cond. $40.2413$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 4·7-s + 9-s + 2·17-s + 4·19-s − 4·21-s + 8·23-s + 27-s + 2·29-s − 8·31-s + 2·37-s + 6·41-s + 12·43-s + 9·49-s + 2·51-s − 10·53-s + 4·57-s − 10·61-s − 4·63-s + 4·67-s + 8·69-s − 16·71-s − 6·73-s + 8·79-s + 81-s + 4·83-s + 2·87-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.51·7-s + 1/3·9-s + 0.485·17-s + 0.917·19-s − 0.872·21-s + 1.66·23-s + 0.192·27-s + 0.371·29-s − 1.43·31-s + 0.328·37-s + 0.937·41-s + 1.82·43-s + 9/7·49-s + 0.280·51-s − 1.37·53-s + 0.529·57-s − 1.28·61-s − 0.503·63-s + 0.488·67-s + 0.963·69-s − 1.89·71-s − 0.702·73-s + 0.900·79-s + 1/9·81-s + 0.439·83-s + 0.214·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 202800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 202800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(202800\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1619.36\)
Root analytic conductor: \(40.2413\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 202800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
13 \( 1 \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.34957613361754, −12.84633655235526, −12.41389605627431, −12.13442591040006, −11.33361859140128, −10.83509711387690, −10.50906597741556, −9.807506812935874, −9.437411212959164, −9.084001873254346, −8.856089727185656, −7.862657963836152, −7.542331798838714, −7.186447113121580, −6.542226139481214, −6.110840352764534, −5.566410866776214, −5.012684181861940, −4.340128293242768, −3.744497712331953, −3.192199976335341, −2.928869096097012, −2.360643222998573, −1.392657201630816, −0.8768880727459601, 0, 0.8768880727459601, 1.392657201630816, 2.360643222998573, 2.928869096097012, 3.192199976335341, 3.744497712331953, 4.340128293242768, 5.012684181861940, 5.566410866776214, 6.110840352764534, 6.542226139481214, 7.186447113121580, 7.542331798838714, 7.862657963836152, 8.856089727185656, 9.084001873254346, 9.437411212959164, 9.807506812935874, 10.50906597741556, 10.83509711387690, 11.33361859140128, 12.13442591040006, 12.41389605627431, 12.84633655235526, 13.34957613361754

Graph of the $Z$-function along the critical line