Properties

Label 202800.gb
Number of curves $4$
Conductor $202800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("gb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 202800.gb have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 202800.gb do not have complex multiplication.

Modular form 202800.2.a.gb

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 4 q^{7} + q^{9} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 202800.gb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
202800.gb1 202800br4 \([0, 1, 0, -5849328008, -172191613152012]\) \(71647584155243142409/10140000\) \(3132405968640000000000\) \([2]\) \(123863040\) \(3.9776\)  
202800.gb2 202800br3 \([0, 1, 0, -419696008, -1841992672012]\) \(26465989780414729/10571870144160\) \(3265817469354418268160000000\) \([2]\) \(123863040\) \(3.9776\)  
202800.gb3 202800br2 \([0, 1, 0, -365616008, -2690075232012]\) \(17496824387403529/6580454400\) \(2032806177408614400000000\) \([2, 2]\) \(61931520\) \(3.6310\)  
202800.gb4 202800br1 \([0, 1, 0, -19504008, -54778464012]\) \(-2656166199049/2658140160\) \(-821141430243164160000000\) \([2]\) \(30965760\) \(3.2845\) \(\Gamma_0(N)\)-optimal