Properties

Label 2-198450-1.1-c1-0-98
Degree $2$
Conductor $198450$
Sign $1$
Analytic cond. $1584.63$
Root an. cond. $39.8074$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 8-s + 3·11-s + 2·13-s + 16-s + 3·17-s + 19-s + 3·22-s − 6·23-s + 2·26-s − 6·29-s + 4·31-s + 32-s + 3·34-s + 4·37-s + 38-s + 9·41-s + 43-s + 3·44-s − 6·46-s + 6·47-s + 2·52-s + 12·53-s − 6·58-s + 3·59-s − 8·61-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.353·8-s + 0.904·11-s + 0.554·13-s + 1/4·16-s + 0.727·17-s + 0.229·19-s + 0.639·22-s − 1.25·23-s + 0.392·26-s − 1.11·29-s + 0.718·31-s + 0.176·32-s + 0.514·34-s + 0.657·37-s + 0.162·38-s + 1.40·41-s + 0.152·43-s + 0.452·44-s − 0.884·46-s + 0.875·47-s + 0.277·52-s + 1.64·53-s − 0.787·58-s + 0.390·59-s − 1.02·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 198450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 198450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(198450\)    =    \(2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1584.63\)
Root analytic conductor: \(39.8074\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 198450,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.916188174\)
\(L(\frac12)\) \(\approx\) \(5.916188174\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 \)
good11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.13289349908185, −12.55953371326226, −12.07958948195344, −11.86404088116265, −11.20711193990728, −10.94545570580812, −10.22793862506865, −9.865525270421623, −9.283667734071323, −8.878563955971528, −8.195405888603090, −7.738687651627462, −7.316001898429731, −6.716016431115546, −6.105468165628449, −5.857943546780580, −5.373736591994287, −4.623034094192918, −3.980162968102356, −3.883207376326452, −3.169327662930728, −2.481377454843634, −1.943510904591519, −1.196398563733638, −0.6526686050233431, 0.6526686050233431, 1.196398563733638, 1.943510904591519, 2.481377454843634, 3.169327662930728, 3.883207376326452, 3.980162968102356, 4.623034094192918, 5.373736591994287, 5.857943546780580, 6.105468165628449, 6.716016431115546, 7.316001898429731, 7.738687651627462, 8.195405888603090, 8.878563955971528, 9.283667734071323, 9.865525270421623, 10.22793862506865, 10.94545570580812, 11.20711193990728, 11.86404088116265, 12.07958948195344, 12.55953371326226, 13.13289349908185

Graph of the $Z$-function along the critical line